

US009200071B2

(12) United States Patent

(10) **Patent No.:** (45) **Date of Patent:**

US 9,200,071 B2 Dec. 1, 2015

(54) METHODS OF TREATING CANCER USING NOTCH1 AND NOTCH3 ANTAGONISTS

(75) Inventor: Christian W. Siebel, Berkeley, CA (US)

(73) Assignee: Genentech, Inc., South San Francisco,

CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 90 days.

(21) Appl. No.: 13/498,560

(22) PCT Filed: Sep. 29, 2010

(86) PCT No.: **PCT/US2010/050610**

§ 371 (c)(1),

(2), (4) Date: **Jun. 1, 2012**

(87) PCT Pub. No.: WO2011/041336

PCT Pub. Date: Apr. 7, 2011

(65) **Prior Publication Data**

US 2012/0328608 A1 Dec. 27, 2012

Related U.S. Application Data

- (60) Provisional application No. 61/247,298, filed on Sep. 30, 2009.
- (51) Int. Cl. C07K 16/28 (2006.01) A61K 39/395 (2006.01) A61K 39/00 (2006.01)
- (52) U.S. Cl.

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0118520	$\mathbf{A}1$	5/2008	Li et al.	
2008/0226621	A1	9/2008	Fung et al.	
2009/0047285	A1*	2/2009	Gurney et al	424/139.1
2009/0081238	$\mathbf{A}1$	3/2009	Siebel et al.	
2010/0111958	A1*	5/2010	Gurney et al	424/139.1
2012/0093813	A1*	4/2012	Li et al	424/133.1

FOREIGN PATENT DOCUMENTS

WO	2008/076960	6/2008
WO	2008/091641	7/2008
WO	2008/108910	9/2008
WO	2008/136848	11/2008
WO	WO 2008/150525 A1	12/2008
WO	WO-2010141249 A2 *	12/2010

OTHER PUBLICATIONS

Agnusdei et al. The rapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts. Leukemia (2013), pp. 1-11.*

Ma et al. Notch1 signaling promotes human t-cell acute lymphoblastic leukemia initiating cell regeneration in supportive niches. PLoS One 7(6): e39725, 2012, 14 pages.*

"NCI-60 DTP human tumor cell line screen"; website dtp.nci.nih. gov/branches/btb/hfa.html; downloaded Jan. 9, 2014, 2 pages.*

"Primary anti-cancer drug screening activities"; website dtp.nci.nih. gov/branches/btb/ivclsp.html; downloaded Jan. 9, 2014, 3 pages.* Wu et al. Therapeutic antibody targeting of individual Notch recep-

tors. Nature 464: 1052-1057, 2010.*
Palermo et al. Acetylation controls Notch3 stability and function in

T-cell leukemia. Oncogene 31: 3807-3817, 2012.* Masiero et al. Notch3-mediated regulation of MKP-1 levels promotes survival of T acute lymphoblastic leukemia cells. Leukemia 25: 588-298, 2011.*

Wu et al., "Notch Signaling and its role in breast cancer" Frontiers in Bioscience 12:4370-4383 (2007)

Jundt et al., "Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma" Blood 99(9):3398-3403 (May 1, 2002)

Kogoshi et al., "y-Secretase inhibitors suppress the growth of leukemia and lymphoma cells" Oncology Reports 18:77-80 (2007)

Koch et al., "Notch and Cancer: a double-edged sword" Cellular and Molecular Life Sciences.64:2746-2762 (2007)

Mullendore et al., "Ligand-dependent Notch Signaling is Involved in Tumor Initiation and Tumor Maintenance in Pancreatic Cancer" Clinical Cancer Research 15:2291-2301 (Apr. 1, 2009).

Pui et al., "Notch1 Expresssion in Early Lymphopoiesis Influences B versus T Lineage Determination" Immunity 11:299-308 (1999).

Allenspach et al. "Notch signaling in cancer" Cancer Biol Ther 1(5):466-76 (2002).

Palomero et al., "Activating mutations in Notch 1 in acute myeloid leukemia and lineage switch leukemias" Leukemia 20:1963-1966 (2006).

Aster et al., "Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1" Mol Cell Biol. 20(20):7505-15 (Oct. 2000).

Bellavia et al., "Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice" Embo J. 19(13):3337-48 (2000).

Bellavia et al., "Combined expression of pTalpha and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis" P Natl Acad Sci USA 99(5):3788-93 (Mar. 2002). Aster et al., "Notch Signaling in leukemia" Annu Rev Pathol Mech Dis 3:587-613 (2008).

Deangelo et al., "A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias" J Clin Oncol (ASCO Meeting Abstracts: 6585), 24(18S):2 pages (Jun. 20, 2006).

(Continued)

Primary Examiner — Bridget E Bunner (74) Attorney, Agent, or Firm — McNeill Baur PLLC

(57) **ABSTRACT**

The present invention relates to methods of treating cancer in general, and leukemia in particular, using Notch1 and Notch3 antagonists singly or in combination. Compositions and methods for the treatment and diagnosis of Notch-associated cancers are also provided.

16 Claims, 25 Drawing Sheets

(56) References Cited

OTHER PUBLICATIONS

Roy et al., "The multifaceted role of Notch in cancer" Curr Opin Genet Dev. 17(1):52-9 (Feb. 2007).

Joshi et al., "Notch signaling mediates G1/S cell-cycle progression in Tcells via cyclin D3 and its dependent kinases" Blood 113(8):1689-1698 (Feb. 19, 2009).

Jurynczyk et al., "Notch3 Inhibition in Myelin-Reactive T Cells Down-Regulates Protein Kinase Cθ and Attenuates Experimental Autoimmune Encephalomyelitis" Journal of Immunology 180(4):2634-2640 (2008).

Li et al., "Modulation of Notch Signaling by Antibodies Specific for the Extracellular Negative Regulatory Region of NOTCH3" Journal of Biological Chemistry 283(12):8046-8054 (Mar. 21, 2008). Miele et al., "Notch Signaling as a Novel Cancer Therapeutic Target" Current Cancer Drug Targets 6:313-323 (2006).

Ellisen et al., "TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms" Cell 66(4):649-61 (Aug. 1991).

Ersvaer et al., "Future Perspectives: Therapeutic Targeting of Notch Signalling May Become a Strategy in Patients Receiving Stem Cell Transplantation for Hematologic Malignancies" Bone Marrow Research 2011:1-16 (Jul. 2010).

Ishida et al., "Cadisil with a Novel Mutation in Exon 7 of NOTCH3 (C388Y)" Internal Medicine 45(16):981-985 (Sep. 15, 2006). Notice of Reasons for Rejection, for Japanese Patent Application No.

2012-532248, issued Jul. 7, 2015, including English translation (6 pages).

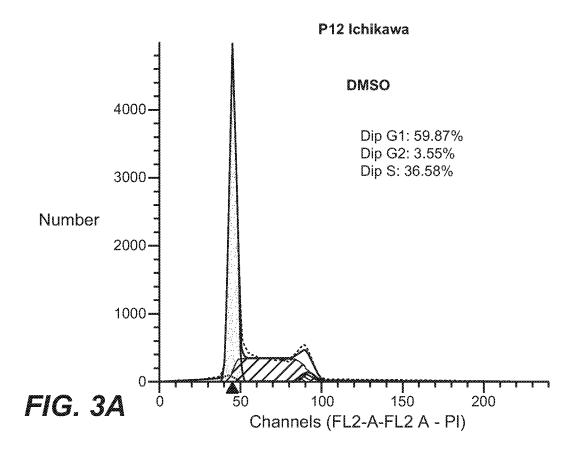
* cited by examiner

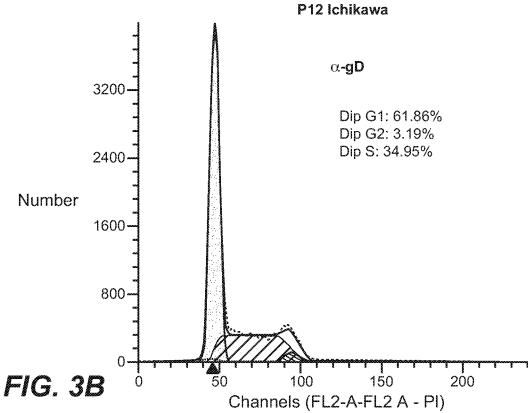
90.7% identity in 2556 residues overlap; Score: 13215.0; Gap frequency: 1.0%

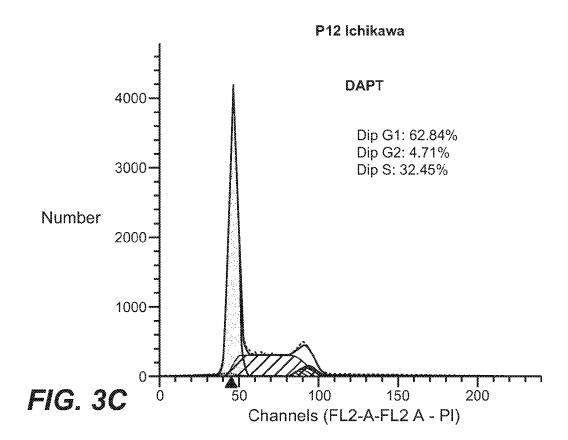
		ARGPRCSQPGETCLNGGKCEAANGTEACVCGGAFVGPRCQDP ARGLRCSQPSGTCLNGGRCEVASGTEACVCSGAFVGQRCQDS
Human 6 Mouse 6		RRGVADYACSCALGFSGPLCLTPLDNACLTNPCRNGGTCDLL RGGTVDYACSCPLGFSGPLCLTPLDNACLANPCRNGGTCDLL RGGTVDYACSCPLGFSGPLCTPLDNACLANPCRNGGTCDLL RGGTVDYACSCPLGFSGPLCTPLDNACLANPCRNGGTCDLL RGGTVDYACSCPLGFSGPLCTPLDNACLANPCRNGGTCDLL RGGTVDYACSCPLGFSGPLCTPLDNACLANPCRNGGTCDLL RGGTVDYACSCPLGFSGPLCTPLANPCRNGGTCDLL RGGTVDYACSCPLGFSGPLCTPLDNACLANPCRNGGTCDLL RGGTVDYACSCPLGFSGPLCTPLANPCRNGGTCDLL RGGTVANPCRNGGTCDLTPLANPCRNGGTCDLT
Human 12 Mouse 12	1 TLTEYKCRCPPGWSGKSC	QQADPCASNPCANGGQCLPFEASYICHCPPSFHGPTCRQDVN QQADPCASNPCANGGQCLPFESSYICRCPPGFHGPTCRQDVN ************************************
Human 18 Mouse 18	1 ECSQNPGLCRHGGTCHNE	/GSYRCVCRATHTGPNCERPYVPCSPSPCQNGGTCRPTGDVT GSYRCACRATHTGPHCELPYVPCSPSPCQNGGTCRPTGDTT ***** ******** *********************
Human 24 Mouse 24	1 HECACLPGFAGQNCEENVI	DDCPGNNCKNGGACVDGVNTYNCRCPPEWTGQYCTEDVDECQ DDCPGNNCKNGGACVDGVNTYNCRCPPEWTGQYCTEDVDECQ
Human 30 Mouse 30	1 LMPNACQNGGTCHNTHGGY	YNCVCVNGWTGEDCSENIDDCASAACFHGATCHDRVASFYCE YNCVCVNGWTGEDCSENIDDCASAACFQGATCHDRVASFYCE
Human 36 Mouse 36	1 CPHGRTGLLCHLNDACISM	EGF9 IPCNEGSNCDTNPVNGKAICTCPSGYTGPACSQDVDECSLGA IPCNEGSNCDTNPVNGKAICTCPSGYTGPACSQDVDECALGA IPCNEGSNCDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACSQDVDTNPVNGKAICTCPSGYTGPACAGA IPCNEGSNCTNPVNGKAICTCPSGYTGPACAGA IPCNEGSNCTNPVNGKAICTCPSGYTGPACAGA IPCNEGSNCTNPVNGKAICTCPSGYTGPACAGA IPCNEGSNCTNPVNGKAICTCPSGYTGPACAGA IPCNEGSNCTNPVNGKAICTCPSGYTGPACAGA IPCNEGSNCTNPVNGKAICTCPSGYTGPACAGA IPCNEGSNCTNPVNGKAICTCPSGYTGPACAGAGA IPCNEGSNCTNPVNGKAICTCPSGYTGPACAGAGA IPCNEGSNCTNPVNGKAICTCPSGYTGPACAGAGAGAGAGAGAAAAAAA
Human 42 Mouse 42		QCLQGYTGPRCEIDVNECVSNPCQNDATCLDQIGEFQCICMP QCLQGYTGPRCEIDVNECISNPCQNDATCLDQIGEFQCICMP
Human 48 Mouse 48	1 GYEGVYCEINTDECASSPO	CLHNGRCLDKINEFQCECPTGFTGHLCQYDVDECASTPCKNG CLHNGHCMDKINEFQCQCPKGFNGHLCQYDVDECASTPCKNG CANNOT AND
Human 54 Mouse 54	1 AKCLDGPNTYTCVCTEGYT 1 AKCLDGPNTYTCVCTEGYT	CGTHCEVDIDECDPDPCHYGSCKDGVATFTCLCRPGYTGHHC CGTHCEVDIDECDPDPCHYGSCKDGVATFTCLCQPGYTGHHC
Human 60 Mouse 60	1 ETNINECHSQPCRHGGTC	QDRDNAYLCFCLKGTTGPNCEINLDDCASSPCDSGTCLDKID QDRDNSYLCLCLKGTTGPNCEINLDDCASNPCDSGTCLDKID (**** *** ****************************

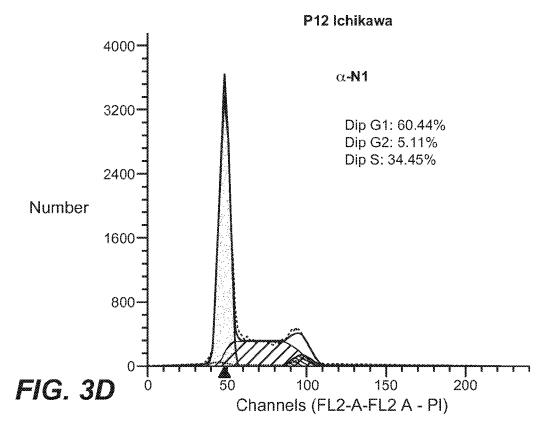
Human Mouse	661 661	GYECACEPGYTGSMCNINIDECAGNPCHNGGTCEDGINGFTCRCPEGYHDPTCLSEVNEC GYECACEPGYTGSMCNVNIDECAGSPCHNGGTCEDGIAGFTCRCPEGYHDPTCLSEVNEC
		EGF18 EGF19
Human Mouse	721 721	NSNPCVHGACRDSLNGYKCDCDPGWSGTNCDINNNECESNPCVNGGTCKDMTSGYVCTCR NSNPCIHGACRDGLNGYKCDCAPGWSGTNCDINNNECESNPCVNGGTCKDMTSGYVCTCR **** **** ***** *********************
		EGF20
Human Mouse	781 781	EGFSGPNCQTNINECASNPCLNQGTCIDDVAGYKCNCLLPYTGATCEVVLAPCAPSPCRN EGFSGPNCQTNINECASNPCLNQGTCIDDVAGYKCNCPLPYTGATCEVVLAPCATSPCKN ************************************
Human Mouse	841 841	GGECRQSEDYESFSCVCPTGWQGQTCEVDINECVLSPCRHGASCQNTHGGYRCHCQAGYS SGVCKESEDYESFSCVCPTGWQGQTCEVDINECVKSPCRHGASCQNTNGSYRCLCQAGYT
		EGF23
Human Mouse	901 901	GRNCETDIDDCRPNPCHNGGSCTDGINTAFCDCLPGFRGTFCEEDINECASDPCRNGANC GRNCESDIDDCRPNPCHNGGSCTDGINTAFCDCLPGFQGAFCEEDINECASNPCQNGANC
		EG24 EGF25
Human Mouse	961 961	TDCVDSYTCTCPAGFSGIHCENNTPDCTESSCFNGGTCVDGINSFTCLCPPGFTGSYCQH TDCVDSYTCTCPVGFNGIHCENNTPDCTESSCFNGGTCVDGINSFTCLCPPGFTGSYCQY
		EGF26
Human Mouse	1021 1021	DVNECDSQPCLHGGTCQDGCGSYRCTCPQGYTGPNCQNLVHWCDSSPCKNGGKCWQTHTQ DVNECDSRPCLHGGTCQDSYGTYKCTCPQGYTGLNCQNLVRWCDSAPCKNGGRCWQTNTQ
		EGF27 EGF28
Human Mouse	1081 1081	YRCECPSGWTGLYCDVPSVSCEVAAQRQGVDVARLCQHGGLCVDAGNTHHCRCQAGYTGS YHCECRSGWTGVNCDVLSVSCEVAAQKRGIDVTLLCQHGGLCVDEGDKHYCHCQAGYTGS ************************************
		EGF29
Human Mouse	1141 1141	YCEDLVDECSPSPCQNGATCTDYLGGYSCKCVAGYHGVNCSEEIDECLSHPCQNGGTCLD YCEDEVDECSPNPCQNGATCTDYLGGFSCKCVAGYHGSNCSEEINECLSQPCQNGGTCID
		EGF30 EGF31
Human Mouse	1201 1201	LPNTYKCSCPRGTQGVHCEINVDDCNPPVDPVSRSPKCFNNGTCVDQVGGYSCTCPPGFV LTNSYKCSCPRGTQGVHCEINVDDCHPPLDPASRSPKCFNNGTCVDQVGGYTCTCPPGFV * * *********************************
Human Mouse	1261 1261	GERCEGDVNECLSNPCDARGTQNCVQRVNDFHCECRAGHTGRRCESVINGCKGKPCKNGG GERCEGDVNECLSNPCDPRGTQNCVQRVNDFHCECRAGHTGRRCESVINGCRGKPCKNGG ***** EGF33 EGF34

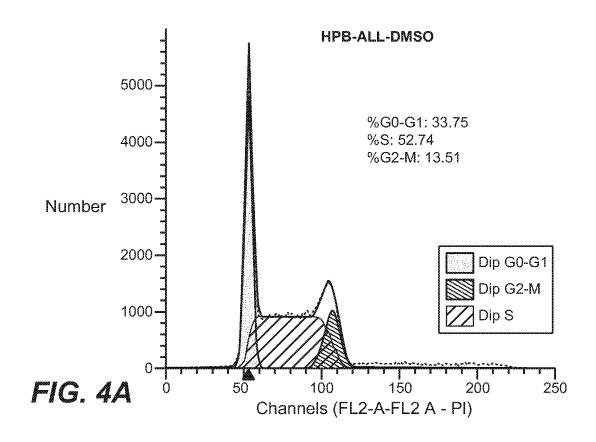
Human Mouse	1321 1321	TCAVASNTARGFICKCPAGFEGATCENDARTCGSLRCLNGGTCISGPRSPTCLCLGPFTG VCAVASNTARGFICRCPAGFEGATCENDARTCGSLRCLNGGTCISGPRSPTCLCLGSFTG
		EGF35
Human Mouse	1381 1381	PECQFPASSPCLGGNPCYNQGTCEPTSESPFYRCLCPAKFNGLLCHILDYSFGGGAGRDI PECQFPASSPCVGSNPCYNQGTCEPTSENPFYRCLCPAKFNGLLCHILDYSFTGGAGRDI
Human Mouse	1441 1441	PPPLIEEACELPECQEDAGNKVCSLQCNNHACGWDGGDCSLNFNDPWKNCTQSLQCWKYF PPPQIEEACELPECQVDAGNKVCNLQCNNHACGWDGGDCSLNFNDPWKNCTQSLQCWKYF
		LNR_A LNR_B
Human Mouse	1501 1501	SDGHCDSQCNSAGCLFDGFDCQRAEGQCNPLYDQYCKDHFSDGHCDQGCNSAECEWDGLD SDGHCDSQCNSAGCLFDGFDCQLTEGQCNPLYDQYCKDHFSDGHCDQGCNSAECEWDGLD
		LNR_C
Human Mouse	1561 1561	CAEHVPERLAAGTLVVVVLMPPEQLRNSSFHFLRELSRVLHTNVVFKRDAHGQQMIFPYY CAEHVPERLAAGTLVLVVLLPPDQLRNNSFHFLRELSHVLHTNVVFKRDAQGQQMIFPYY ***********************************
Human Mouse	1621 1621	GREEELRKHPIKRAAEGWAAPDALLGQVKASLLPGGSEGGRRRRELDPMDVRGSIVYLEI GHEEELRKHPIKRSTVGWATSSLLPGTS-GGRQRRELDPMDIRGSIVYLEI
		* ******* *** *** *** *** ******
		s1 HD-C
Human Mouse	1681 1671	S1 HD-C DNRQCVQASSQCFQSATDVAAFLGALASLGSLNIPYKIEAVQSETVEPPPPAQLHFMYVA DNRQCVQSSSQCFQSATDVAAFLGALASLGSLNIPYKIEAVKSEPVEPPLPSQLHLMYVA ******* *****************************
		S1 HD-C DNRQCVQASSQCFQSATDVAAFLGALASLGSLNIPYKIEAVQSETVEPPPPAQLHFMYVA DNRQCVQSSSQCFQSATDVAAFLGALASLGSLNIPYKIEAVKSEPVEPPLPSQLHLMYVA
		DNRQCVQASSQCFQSATDVAAFLGALASLGSLNIPYKIEAVQSETVEPPPPAQLHFMYVA DNRQCVQSSSQCFQSATDVAAFLGALASLGSLNIPYKIEAVKSEPVEPPLPSQLHLMYVA ************************************
Mouse Human	1671 1741	DNRQCVQASSQCFQSATDVAAFLGALASLGSLNIPYKIEAVQSETVEPPPPAQLHFMYVA DNRQCVQSSSQCFQSATDVAAFLGALASLGSLNIPYKIEAVKSEPVEPPLPSQLHLMYVA ************************************
Mouse Human Mouse	1741 1731 1801	DNRQCVQASSQCFQSATDVAAFLGALASLGSLNIPYKIEAVQSETVEPPPPAQLHFMYVA DNRQCVQSSSQCFQSATDVAAFLGALASLGSLNIPYKIEAVKSEPVEPPLPSQLHLMYVA ************************************

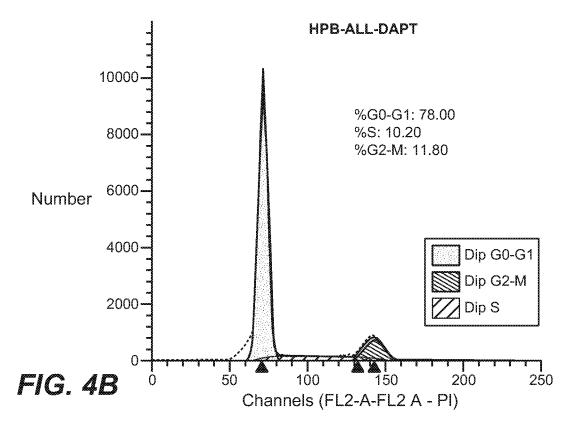

Human Mouse	1981 1971	IRNRATDLDARMHDGTTPLILAARLAVEGMLEDLINSHADVNAVDDLGKSALHWAAAVNN LRNRATDLDARMHDGTTPLILAARLAVEGMLEDLINSHADVNAVDDLGKSALHWAAAVNN *********************************
Human Mouse	2041 2031	VDAAVVLLKNGANKDMQNNREETPLFLAAREGSYETAKVLLDHFANRDITDHMDRLPRDI VDAAVVLLKNGANKDMQNNKEETPLFLAAREGSYETAKVLLDHFANRDITDHMDRLPRDI ************************************
Human Mouse	2101 2091	AQERMHHDIVRLLDEYNLVRSPQLHGAPLGGTPTLSPPLCSPNGYLGSLKPGVQGKKVRK AQERMHHDIVRLLDEYNLVRSPQLHGTALGGTPTLSPTLCSPNGYLGNLKSATQGKKARK **********************************
Human Mouse	2161 2151	PSSKGLACGSKEAKDLKARRKKSQDGKGCLLDSSGMLSPVDSLESPHGYLSDVASPPLLP PSTKGLACGSKEAKDLKARRKKSQDGKGCLLDSSSMLSPVDSLESPHGYLSDVASPPLLP ** *******************************
Human Mouse	2221 2211	SPFQQSPSVPLNHLPGMPDTHLGIGHLNVAAKPEMAALGGGGRLAFETGPPRLSHLPVAS SPFQQSPSMPLSHLPGMPDTHLGISHLNVAAKPEMAALAGGSRLAFEPPPPRLSHLPVAS ******* ** ********** ***************
Human Mouse	2281 2271	GTSTVLGSSSGGALNFTVGGSTSLNGQCEWLSRLQSGMVPNQYNPLRGSVAPGPLSTQAP SASTVLSTNGTGAMNFTVGAPASLNGQCEWLPRLQNGMVPSQYNPLRPGVTPGTLSTQAA **** ** **** ******* *** ***** * * *
Human Mouse	2341 2331	SLQHGMVGPLHSSLAASALSQMMSYQGLPSTRLATQPHLVQTQQVQPQNLQMQQQNLQPA GLQHSMMGPLHSSLSTNTLSPII-YQGLPNTRLATQPHLVQTQQVQPQNLQLQPQNLQP- *** * ****** ** ************** * *****
Human Mouse	2401 2389	NIQQQQSLQPPPPPPQPHLGVSSAASGHLGRSFLSGEPSQADVQPLGPSSLAVHTILPQE PSQPHLSVSSAANGHLGRSFLSGEPSQADVQPLGPSSLPVHTILPQE * **** ***** ************************
Human Mouse	2461 2436	SPALPTSLPSSLVPPVTAAQFLTPPSQHSYSS-PVDNTPSHQLQVPEHPFLTPSPESPDQ SQALPTSLPSSMVPPMTTTQFLTPPSQHSYSSSPVDNTPSHQLQVPEHPFLTPSPESPDQ * ******* *** * *********************
Human Mouse		WSSSSPHSNVSDWSEGVSSPPTSMQSQIARIPEAFK WSSSSPHSNISDWSEGISSPPTTMPSQITHIPEAFK ******* ***** * **** * *****

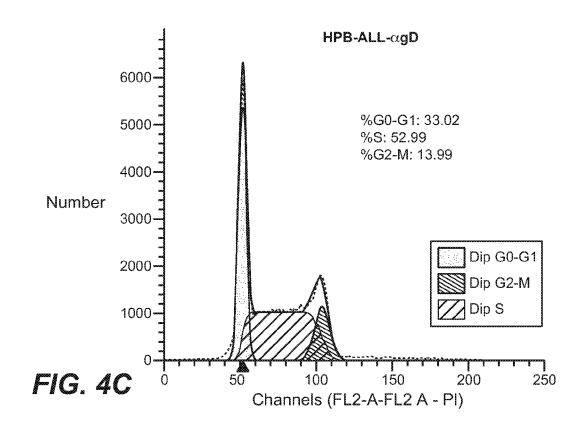

FIG. 1D

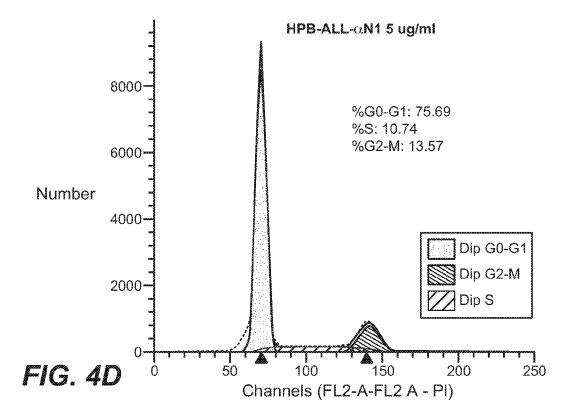

Amino Acid Sequence of Human Notch 3 (NP_000426)

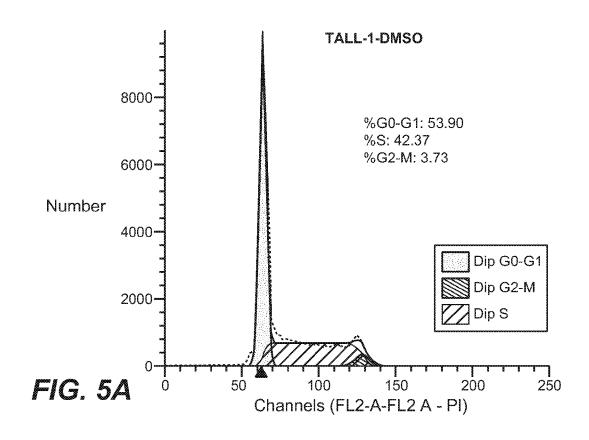

1	MGPGARGRRR	RRRPMSPPPP	PPPVRALPLL	LLLAGPGAAA	PP <u>CLDGSPCA</u>	NGGRCTQLPS
61	REAACLCPPG	WVGERCQLED	PCHSGPCAGR	GVCQSSVVAG	TARFSCRCPR	GFRGPDCSLP
121	DPCLSSPCAR	GARCSVGPDG	RFLCSCPPGY	QGRSCRSDVD	ECRVGEPCRH	GGTCLNTPGS
181	FRCQCPAGYT	GPLCENPAVP	CAPSPCRNGG	TCRQSGDLTY	DCACLPGFEG	QNCEVNVDDC
241	PGHRCLNGGT	CVDGVNTYNC	QCPPEWTGQF	CTEDVDECQL	QPNACHNGGT	CFNTLGGHSC
301	VCVNGWTGES	CSQNIDDCAT	AVCFHGATCH	DRVASFYCAC	PMGKTGLLCH	LDDACVSNPC
361	HEDAICDTNP	VNGRAICTCP	PGFTGGACDQ	DVDECSIGAN	PCEHLGRCVN	TOGSFLCOCG
421	RGYTGPRCET	DVNECLSGPC	RNQATCLDRI	GQFTCICMAG	FTGTYCEVDI	DECQSSPCVN
481	GGVCKDRVNG	FSCTCPSGFS	GSTCQLDVDE	CASTPCRNGA	KCVDQPDGYE	CRCAEGFEGT
541	LCDRNVDDCS	POPCHHGRCV	DGIASFSCAC	APGYTGTRCE	SQVDECRSOP	CRHGGKCLDL
601	VDKYLCRCPS	GTTGVNCEVN	IDDCASNPCT	FGVCRDGINR	YDCVCQPGFT	GPLCNVEINE
661	CASSPCGEGG	SCVDGENGFR	CLCPPGSLPP	LCLPPSHPCA	HEPCSHGICY	DAPGGFRCVC
721	EPGWSGPRCS	QSLARDACES	OPCRAGGTCS	SDGMGFHCTC	PPGVQGRQCE	LLSPCTPNPC
781	EHGGRCESAP	GQLPVCSCPQ	GWQGPRCQQD	VDECAGPAPC	GPHGICTNLA	GSFSCTCHGG
841	YTGPSCDQDI	NDCDPNPCLN	GGSCQDGVGS	FSCSCLPGFA	GPRCARDVDE	CLSNPCGPGT
901	CTDHVASFTC	TCPPGYGGFH	CEQDLPDCSP	SSCFNGGTCV	DGVNSFSCLC	RPGYTGAHCQ
961	<u>HEADPCLSRP</u>	CLHGGVCSAA	HPGFRCTCLE	SFTGPQCQTL	VDWCSRQPCQ	NGGRCVQTGA
1021	YCLCPPGWSG	RLCDIRSLPC	REAAAQIGVR	LEQLCQAGGQ	CVDEDSSHYC	VCPEGRTGSH
1081	CEQEVDPCLA	<u> QPCQHGGTCR</u>	GYMGGYMCEC	LPGYNGDNCE	DDVDECASQP	COHGGSCIDL
1141	VARYLCSCPP	GTLGVLCEIN	EDDCGPGPPL	DSGPRCLHNG	TCVDLVGGFR	CTCPPGYTGL
1201	RCEADINECR	SGACHAAHTR	DCLQDPGGGF	RCLCHAGFSG	PRCQTVLSPC	ESOPCOHGGO
1261	CRPSPGPGGG	LTFTCHCAQP	FWGPRCERVA	RSCRELQCPV	GVPCQQTPRG	PRCACPPGLS
1321	<u>GPSCRSFPGS</u>	PPGASNASCA	AAPCLHGGSC	RPAPLAPFFR	CACAQGWTGP	RCEAPAAAPE
1381	<u>VSE</u> EPRCPRA	ACQAKRGDQR	CDRECNSPGC	${\it GWDGGDCSLS}$	VGDPWRQCEA	LQCWRLFNNS
1441	RCDPACSSPA	CLYDNFDCHA	GGRERTCNPV	YEKYCADHFA	DGRCDQGCNT	EECGWDGLDC
1501	ase vpallar	GVLVLTVLLP	PEELLRSSAD	FLQRLSAILR	TSLRFRLDAH	GQAMVFPYHR
1561	PSPGSEPRAR	RELAPEVIGS	VVMLEIDNRL	CLQSPENDHC	FPDAQSAADY	LGALSAVERL
1621	DFPYPLRDVR	GEPLEPPEPS	VPLLPLLVAG	AATTIAITAT	GVMVARRKRE	HSTLWFPEGF
1681	SLHKDVASGH	KGRREPVGQD	ALGMKNMAKG	ESLMGEVATD	WMDTECPEAK	RLKVEEPGMG
1741	AEEAVDCRQW	TQHHLVAADI	RVAPAMALTP	PQGDADADGM	DVNVRGPDGF	TPLMLASFCG
1801	GALEPMPTEE	DEADDTSASI	ISDLICQGAQ	LGARTDRTGE	TALHLAARYA	RADAAKRLLD
1861	AGADTNAQDH	SGRTPLHTAV	TADAQGVFQI	LIRNRSTDLD	ARMADGSTAL	ILAARLAVEG
1921	MVEELIASHA	DVNAVDELGK	SALHWAAAVN	NVEATLALLK	NGANKDMQDS	KEETPLFLAA
1981	REGSYEAAKL	LLDHFANREI	TDHLDRLPRD	VAQERLHQDI	VRLLDQPSGP	RSPPGPHGLG
2041	PLLCPPGAFL	PGLKAAQSGS	KKSRRPPGKA	GLGPQGPRGR	GKKLTLACPG	PLADSSVTLS
2101	PVDSLDSPRP	FGGPPASPGG	FPLEGPYAAA	TATAVSLAQL	GGPGRAGLGR	QPPGGCVLSL
2161	GLLNPVAVPL	DWARLPPPAP	PGPSFLLPLA	PGPQLLNPGT	PVSPQERPPP	YLAVPGHGEE
2221	YPVAGAHSSP	PKARFLRVPS	EHPYLTPSPE	SPEHWASPSP	PSLSDWSEST	PSPATATGAM
2281	ATTTGALPAQ	PLPLSVPSSL	AQAQTQLGPQ	PEVTPKRQVL	A (SEQ ID 1	10 3)

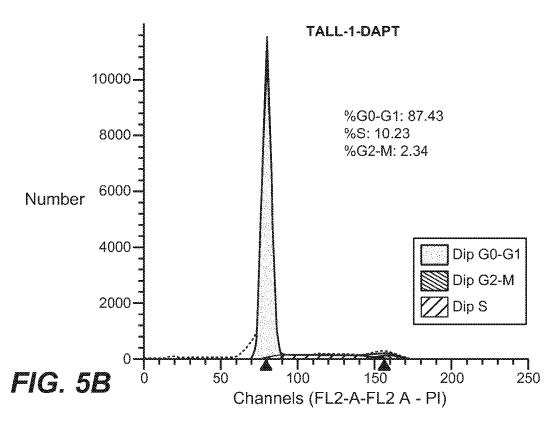

FIG. 2

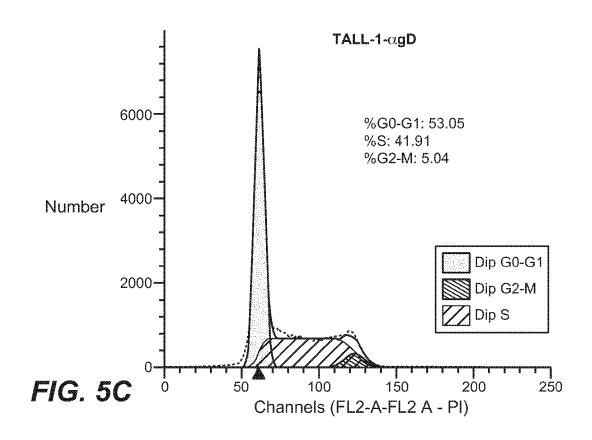


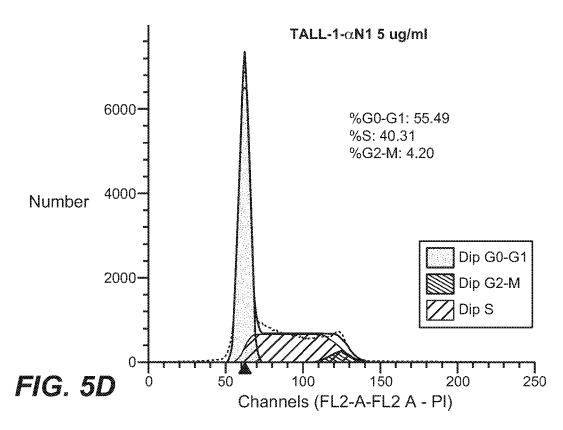












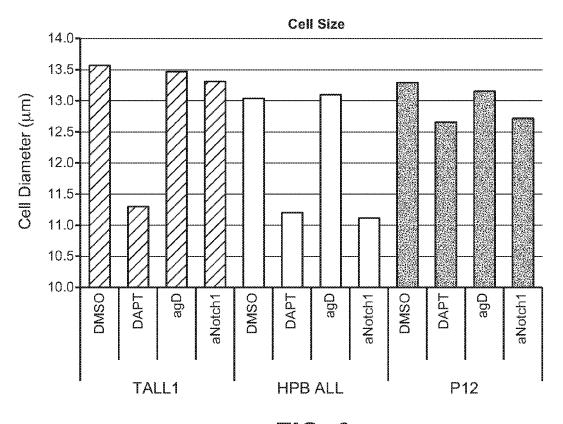
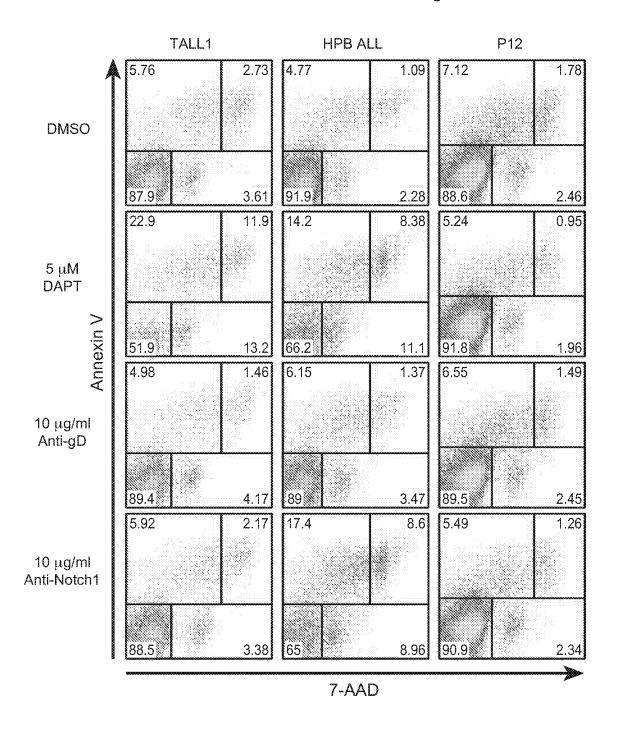
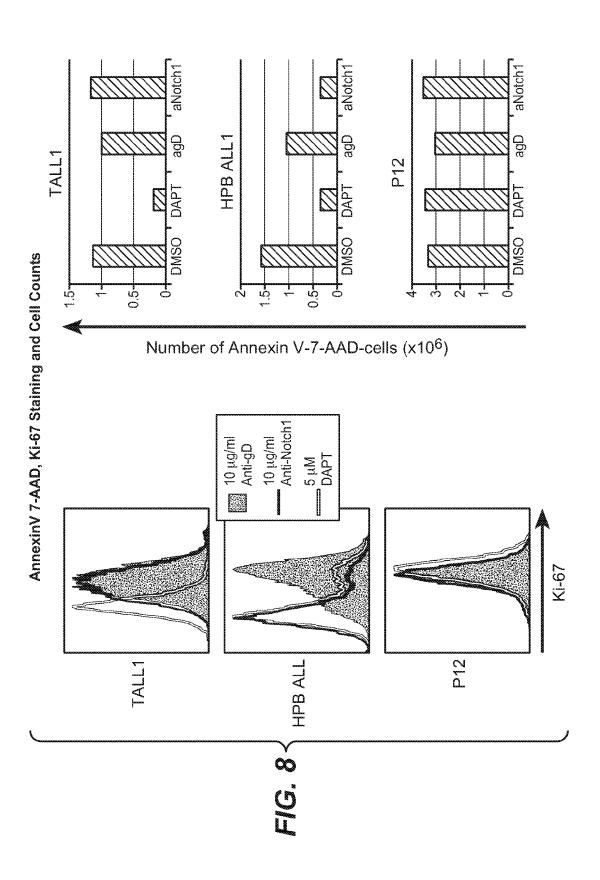
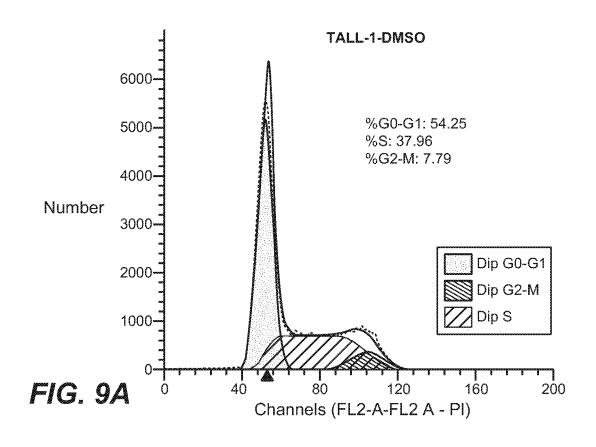
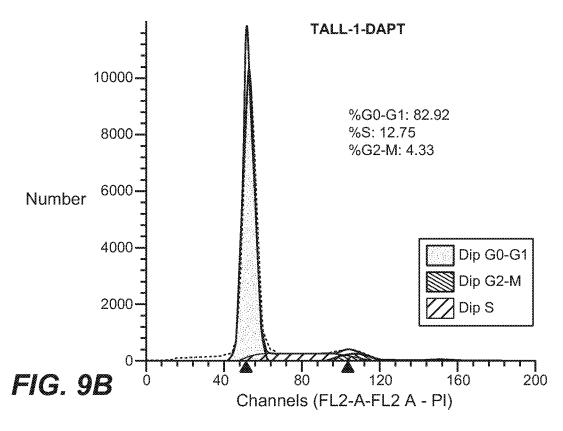
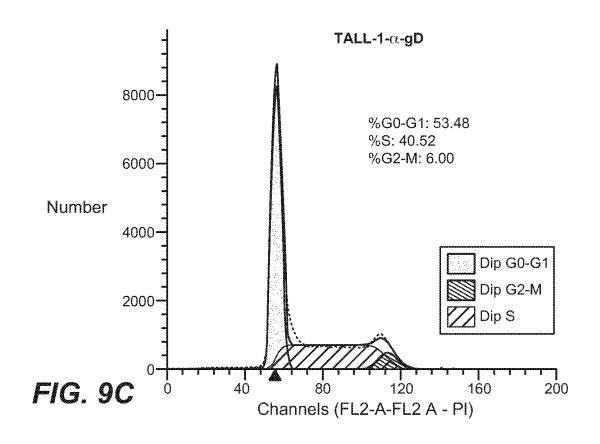
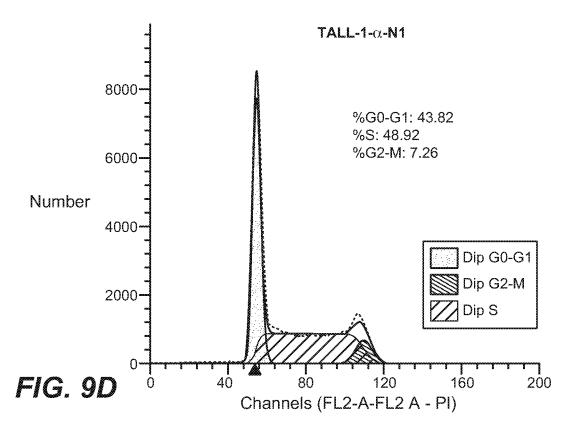
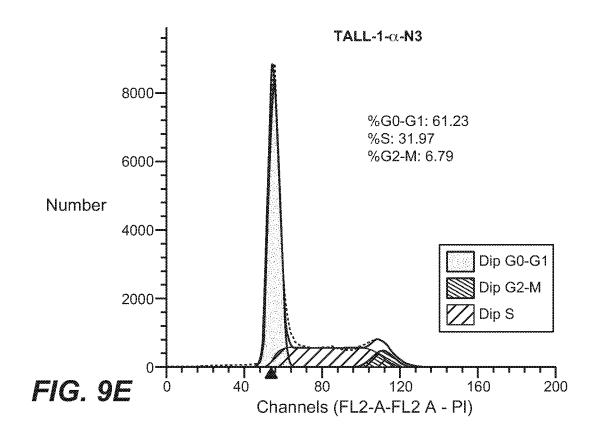


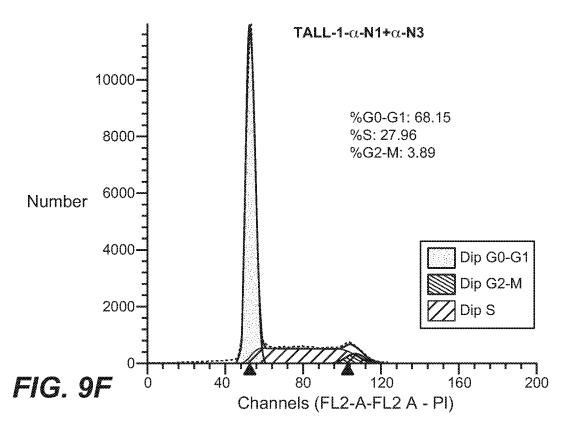
FIG. 6

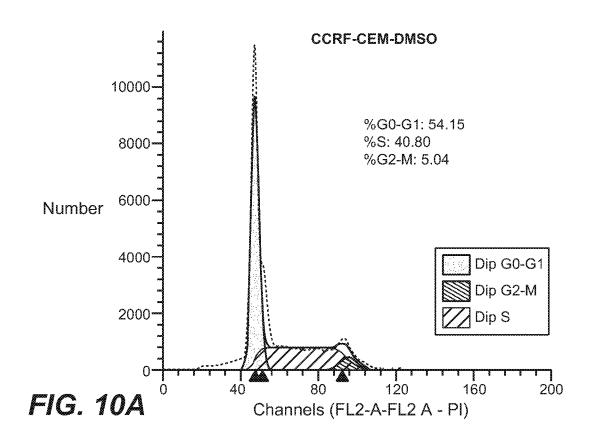
AnnexinV 7-AAD Staining

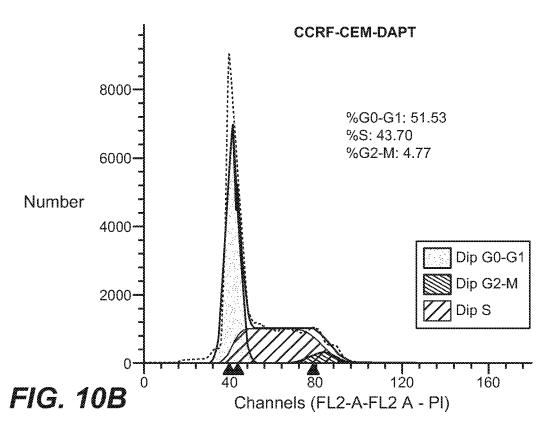






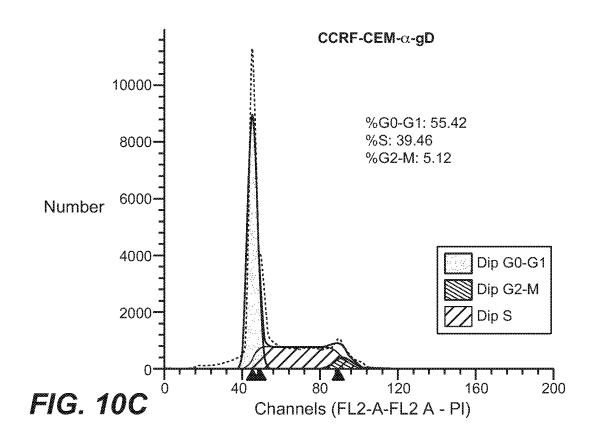

FIG. 7

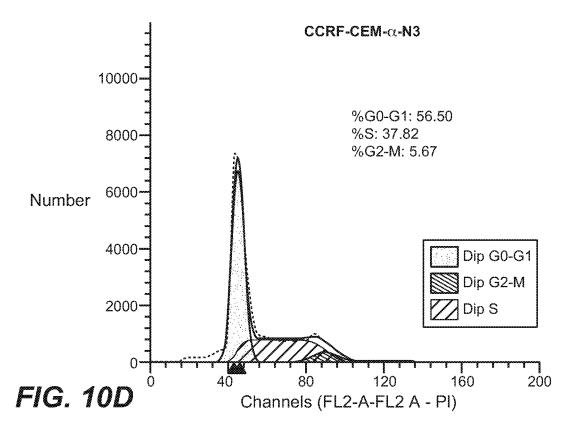


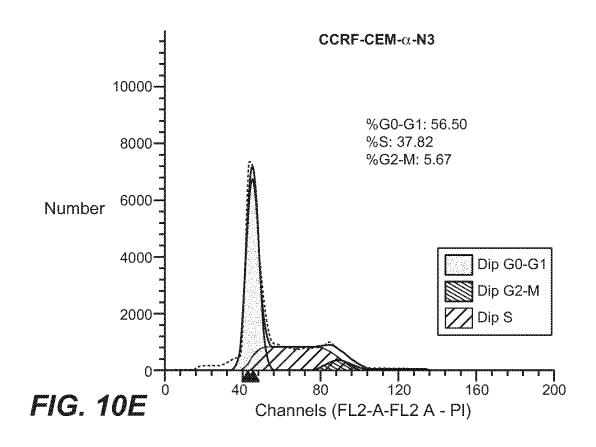


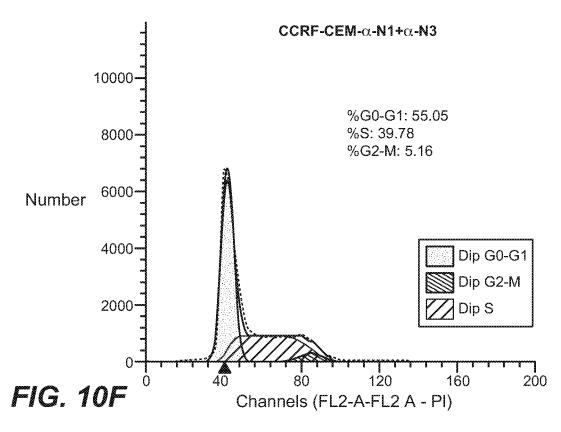


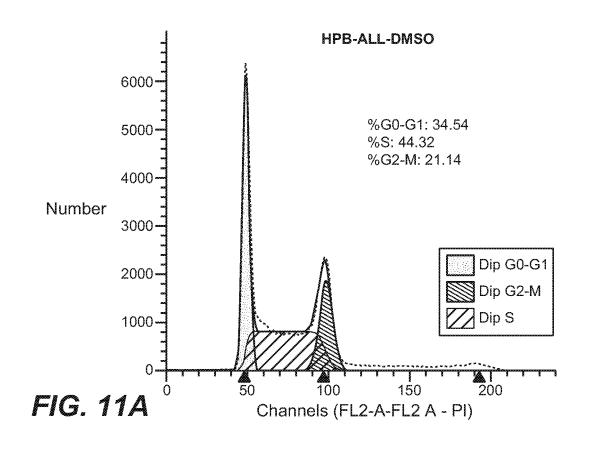


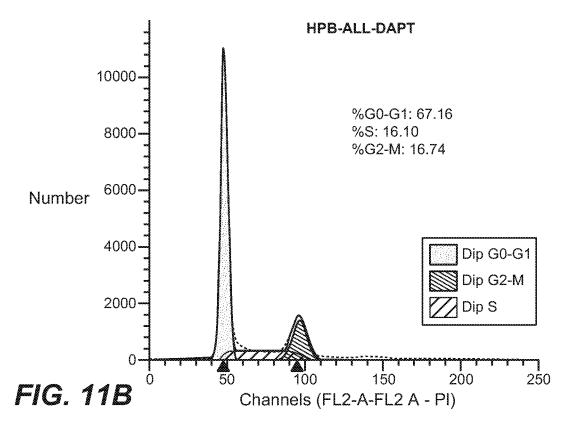


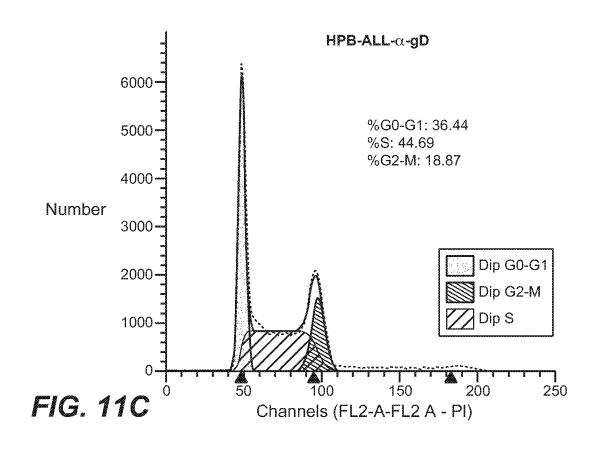


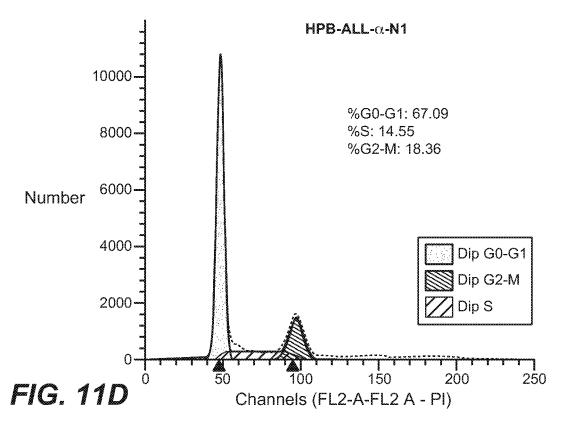


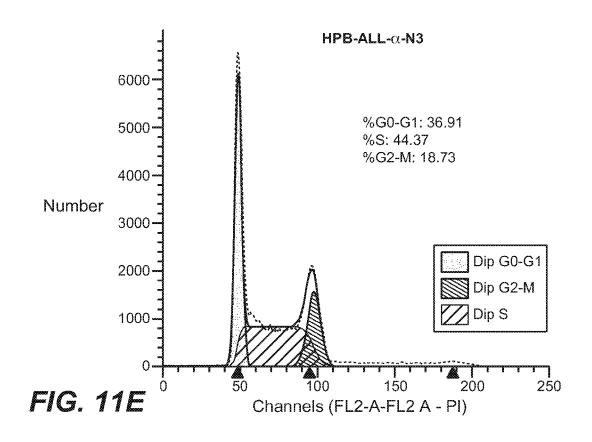


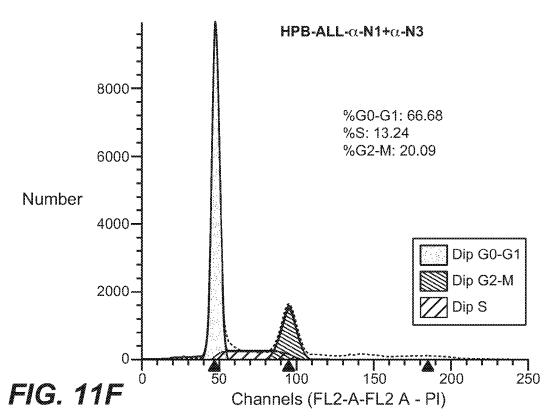












Ligand-dependent Activation of Notch3 in MDA-MB-468 Cells

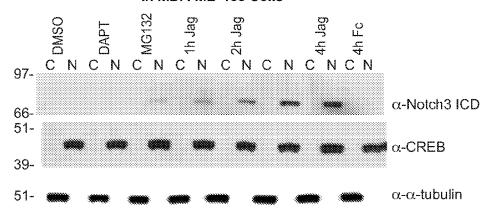


FIG. 12

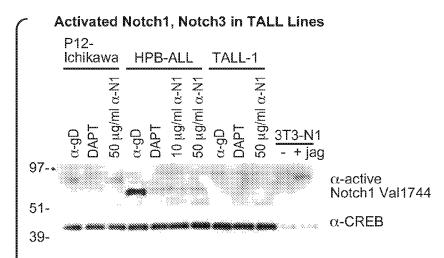
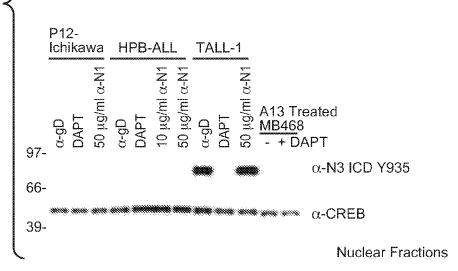



FIG. 13

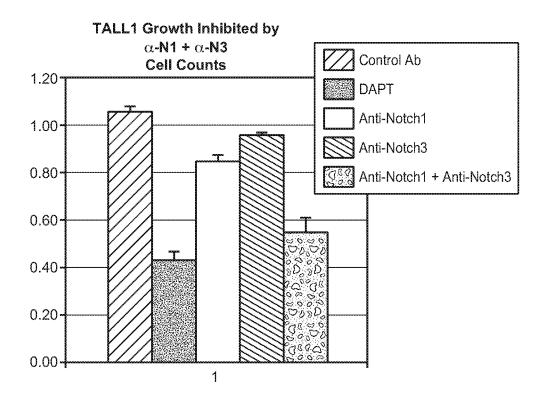


FIG. 14

METHODS OF TREATING CANCER USING NOTCH1 AND NOTCH3 ANTAGONISTS

RELATED APPLICATIONS

This application claims the benefit under 35 USC 119(e) of provisional application No. 61/247,298 filed Sep. 30, 2009, the contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to methods of treating cancer in general, and leukemia in particular, using Notch1 and Notch3 antagonists singly or in combination. Compositions and methods for the treatment and diagnosis of Notch-associated cancers are also provided.

SEQUENCE LISTING

The present application contains a Sequence Listing which ²⁰ has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Sep. 3, 2010, is named P4371.txt and is 65,600 bytes in size.

BACKGROUND

The Notch receptor family is a class of evolutionarily conserved transmembrane receptors that transmit signals affecting development in organisms as diverse as sea urchins and 30 humans. Notch receptors and their ligands Delta and Serrate (known as Jagged in mammals) are transmembrane proteins with large extracellular domains that contain epidermal growth factor (EGF)-like repeats. The number of Notch paralogues differs between species. For example, there are four 35 Notch receptors in mammals (Notch1-Notch4), two in Caenorhabditis elegans (LIN-12 and GLP-1) and one in Drosophila melanogaster (Notch). Notch receptors are proteolytically processed during transport to the cell surface by a furinlike protease at a site S1, which is N-terminal to the 40 transmembrane domain, producing an extracellular Notch (ECN) subunit and a Notch transmembrane subunit (NTM). These two subunits remain non-covalently associated and constitute the mature heterodimeric cell-surface receptor.

Notch1 ECN subunits contain 36 N-terminal EGF-like 45 repeats followed by three tandemly repeated Lin 12/Notch Repeat (LNR) modules that precede the S1 site. Notch3 ECN has a similar structure, but with 34 EGF-like repeats. Each LNR module contains three disulfide bonds and a group of conserved acidic and polar residues predicted to coordinate a 50 calcium ion. Within the EGF repeat region lie binding sites for the activating ligands. The Notch1 and Notch3 NTMs comprises an extracellular region (which harbors the S2 cleavage site), a transmembrane segment (which harbors the S3 cleavage site), and a large intracellular region (ICN or ICD) that 55 includes a RAM domain, ankyrin repeats, a transactivation domain and a carboxy-terminal PEST domain. Stable association of the ECN and NTM subunits depends upon a heterodimerization domain (HD) comprising the carboxy-terminal end of the ECN (termed HD-N) and the extracellular 60 amino-terminal end of NTM (termed HD-C). Before ligandinduced activation, Notch is maintained in a resting conformation by a negative regulatory region (NRR), which comprises the three LNRs and the HD domain.

Binding of a Notch ligand to the ECN subunit initiates two 65 successive proteolytic cleavages that occur through regulated intramembrane proteolysis. The first cleavage by a metallo-

2

protease (ADAM17) at site S2 renders the Notch transmembrane subunit susceptible to the second cleavage at site S3 close to the inner leaflet of the plasma membrane. Site S3 cleavage, which is catalyzed by a multiprotein complex containing presenilin and nicastrin and promoting γ -secretase activity, liberates the intracellular portion of the Notch transmembrane subunit, allowing it to translocate to the nucleus and activate transcription of target genes. (For review of the proteolytic cleavage of Notch, see, e.g., Sisodia et al., *Nat. Rev. Neurosci.* 3:281-290, 2002.)

Five Notch ligands of the Jagged and Delta-like classes have been identified in humans (Jagged1 (also termed Serrate1), Jagged2 (also termed Serrate2), Delta-like1 (also termed DLL1), Delta-like3 (also termed DLL3), and Delta-like4 (also termed DLL4)). Each of the ligands is a single-pass transmembrane protein with a conserved N-terminal Delta, Serrate, LAG-2 (DSL) motif essential for binding Notch. A series of EGF-like modules C-terminal to the DSL motif precede the membrane-spanning segment. Unlike the Notch receptors, the ligands have short cytoplasmic tails of 70-215 amino acids at the C-terminus. In addition, other types of ligands have been reported (e.g., DNER, NB3, and F3/Contactin). (For review of Notch ligands and ligand-mediated Notch activation, see, e.g., D'Souza et al., *Oncogene* 27:5148-5167, 2008.)

The Notch pathway functions during diverse developmental and physiological processes including those affecting neurogenesis in flies and vertebrates. In general, Notch signaling is involved in lateral inhibition, lineage decisions, and the establishment of boundaries between groups of cells. (See, e.g., Bray, *Mol. Cell Biol.* 7:678-679, 2006.) A variety of human diseases, including cancers and neurodegenerative disorders have been shown to result from mutations in genes encoding Notch receptors or their ligands. (See, e.g., Nam et al., *Curr. Opin. Chem. Biol.* 6:501-509, 2002.)

The role of Notch1 as an oncoprotein was demonstrated in leukemia involving T-cell progenitors. This role was first recognized in human acute lymphoblastic leukemia (T-ALL). (See, e.g., Aster et al., Annu. Rev. Pathol. Mech. Dis. 3:587-613, 2008.) T-ALL is an aggressive leukemia that preferentially afflicts children and adolescents. A recurrent t(7; 9)(q34; q34.3) chromosomal translocation, which creates a truncated, constitutively active variant of human Notch1, was identified in a subset of T-ALLs. In addition to the (7; 9) translocation, frequent gain-of-function mutations in human Notch1 were later discovered in more than 50% of all human T-ALLs. (See Weng et al., Science, 306:269-271, 2004.) Those mutations occur in the extracellular HD domain and the intracellular PEST domain. Other studies showed that retroviral-based expression of Notch1 ICN in bone marrow cells caused T-ALL in mouse models that received the transplanted bone marrow cells. (See Aster et al., Mol. Cell Biol. 20:7505-7515, 2000.)

Consistent with this role for Notch1 in leukemia involving T cell progenitors, Notch1 signaling has been shown to be essential for T cell development in mouse models, and Notch1-mediated signals promote T cell development at the expense of B cell development. (See, e.g., Wilson et al., *J. Exp. Med.* 194:1003-1012, 2001.) Further roles for Notch1 in leukemia have been described. Activating mutations in the Notch1 PEST domain have been reported at low frequency in human acute myeloid leukemia (AML) and in lineage switch leukemias, suggesting that activating mutations in Notch1 may occur in a leukemic stem cell that precedes myeloid and T-lineage commitment. (See Palomero et al., *Leukemia* 20:1963-1966, 2006.)

Prior to the discovery of the frequent Notch1 gain-of-function mutations in T-ALL, it was observed that enforced expression of Notch3 ICN in the thymus caused T-cell leukemia/lymphoma in transgenic mice. (See Bellavia et al., *EMBO J.* 19:3337-3348, 2000.) Notch3 mRNA was also 5 reported as being expressed in all of thirty T-ALL patient samples analyzed, whereas it was not detected in normal peripheral blood T lymphocytes and non-T cell leukemias. (See Bellavia et al., *Proc. Nat'l Acad. Sci. USA* 99:3788-3793, 2002.)

Notch1 and Notch3 are also associated with a variety of other cancers. For instance, in solid tumors, increased Notch1 expression has been observed in human cancers of the cervix, colon, lung, pancreas, skin, and brain (see, e.g., Leong et al., Blood 107:2223-2233, 2006), and elevated expression of 15 Notch1 is correlated with poor outcome in breast cancer (see, e.g., Parr et al., Int. J. Mol. Med. 14:779-786, 2004; Reedijk et al., Cancer Res. 65:8530-8537, 2005). A chromosomal translocation (15; 19) has been identified in a subset of non-small cell lung tumors, and the translocation is thought to elevate 20 Notch3 transcription. In ovarian cancer, Notch3 gene amplification was found to occur in ~19% of tumors, and overexpression of Notch3 was found in more than half of ovarian serous carcinomas. Overexpression of activated Notch1 and Notch3 in transgenic mice induces mouse breast tumors, and 25 overexpression of Notch3 is sufficient to induce choroid plexus tumor formation in a mouse model, suggesting a role for Notch3 in the development of certain brain tumors. (For review of Notch3 in cancer, see Shih et al. Cancer Res. 67:1879-1882, 2007.)

Certain anti-Notch1 antagonist antibodies having therapeutic efficacy have been described. (See U.S. Patent Application Publication No. US 2009/0081238 A1, expressly incorporated by reference in its entirety herein.) For example, such antibodies bind to the negative regulatory region (NRR) 35 of Notch1, block Notch1 signaling, disrupt angiogenesis and vascularization, and inhibit tumor growth in mouse xenograft models of non small cell lung carcinoma and colon adenocarcinoma. Certain antibodies described therein bind to LNR-A and LNR-B (the first and second of the three LIN12/40 Notch Repeats) and HD-C of Notch1 NRR. Other anti-Notch1 antibodies that bind to the EGF repeat region of Notch1 and block Notch1 activity, perhaps by blocking ligand binding, have also been described. (See International Publication No. WO 2008/091641.)

Certain anti-Notch3 antagonist antibodies have also been described. (See U.S. Patent Application Publication No. US 2008/0226621 A1, expressly incorporated by reference in its entirety herein.) Such antibodies bind to the negative regulatory region (NRR) of Notch3 and block Notch3 signaling. 50 Certain antibodies described therein bind to LNR-A (the first of the three LIN12/Notch Repeats) and HD-C (referred to alternatively as the second dimerization domain in US 2008/0226621 A1) of Notch3 NRR. Other anti-Notch3 antibodies that bind to the EGF-like repeat region of Notch3 and block 55 Notch3 activity, perhaps by blocking ligand binding, have also been described. (See Li et al., *J. Biol. Chem.* 283:8046-8054, 2008.)

Gamma-secretase inhibitors (GSIs), which are pan-Notch inhibitors that inhibit multiple Notch receptors, have been 60 proposed for treatment of Notch-related diseases, and in fact have been used in clinical trials for the treatment of T-ALL. (See Roy et al., *Curr. Opin. Genet. Dev.* 17:52-59, 2007; Deangelo et al., *J. Clin. Oncol.* 2006 ASCO Annual Meeting Proceedings Part I 24:6586, 2006.) However, GSIs cause 65 weight loss and intestinal goblet cell metaplasia, reflecting the role that Notch plays in determining cell fate by maintain-

4

ing proliferation of intestinal crypt progenitor cells and prohibiting differentiation to a secretory cell fate. (See van Es et al., *Nature* 435:959-963, 2005). Although these side effects of pan-Notch inhibition may be manageable in a clinical setting, inhibitors that target individual Notch receptors, and therefore minimize or reduce these side effects, may be advantageous.

There is a need in the art for further therapeutic methods of treating cancer by targeting Notch receptors. The invention described herein meets the above-described needs and provides other benefits.

SUMMARY

The present invention relates to the treatment of cancer using Notch antagonists singly or in combination. The present invention specifically relates, in part, to the characterization of different classes of T-ALL. One class of T-ALL is sensitive to treatment with GSI and is also sensitive to treatment with a Notch1-specific antagonist. In contrast, another class of T-ALL is sensitive to treatment with GSI, but insensitive (i.e., resistant) to treatment with a Notch1-specific antagonist. As shown herein, the latter class of T-ALL is partially sensitive to treatment with a Notch3-specific antagonist, and even more sensitive to a combination of a Notch1-specific antagonist and a Notch3-specific antagonist. These results suggest a role for both Notch1 and Notch3 in leukemias, particularly T cell progenitor leukemias such as T-ALL.

In one aspect, a method of treating a GSI-responsive cancer that does not respond to a Notch1-specific antagonist is provided, the method comprising administering to a patient having such cancer an effective amount of a Notch3-specific antagonist. In certain embodiments, the cancer is T-cell leukemia. In certain embodiments, the T-cell leukemia is a lymphoblastic leukemia. In certain embodiments, the T-cell leukemia is T-ALL. In certain embodiments, the Notch3-specific antagonist is an anti-Notch3 antagonist antibody. In certain embodiments, the anti-Notch3 antagonist antibody is an anti-Notch3 NRR antibody. In certain embodiments, the anti-Notch3 NRR antibody binds to the LNR-A and HD-C domains of Notch3 NRR. In certain embodiments, the anti-Notch3 NRR antibody comprises the heavy and light chain variable region CDRs of antibody 256A-4 or 256A-8. In certain embodiments, the anti-Notch3 NRR antibody is a humanized form of antibody 256A-4 or 256A-8. In certain embodiments, the anti-Notch3 antagonist antibody is an anti-Notch3 antibody that binds to one or more EGF-like repeats of Notch3.

In a further embodiment, the method further comprises administering an effective amount of a Notch1-specific antagonist. In certain embodiments, the Notch1-specific antagonist that is administered is an anti-Notch1 antagonist antibody. In certain embodiments, the anti-Notch1 antagonist antibody is an anti-Notch1 NRR antibody. In certain embodiments, the anti-Notch1 NRR antibody binds to the LNR-A, LNR-B, and HD-C domains of Notch1 NRR. In certain embodiments, the anti-Notch1 NRR antibody is selected from Antibody A, A-1, A-2, and A-3. In certain embodiments, the anti-Notch1 NRR antibody comprises the heavy and light chain variable region CDRs of an antibody selected from Antibody A, A-1, A-2, and A-3. In certain embodiments, the anti-Notch1 antagonist antibody is an anti-Notch1 antibody that binds to one or more EGF-like repeats of Notch1.

In a further aspect of the invention, an antibody that binds to activated Notch3 ICD is provided. In certain embodiments, the antibody binds to the peptide of SEQ ID NO:4. In certain

embodiments, the antibody is polyclonal. In certain embodiments, the antibody is monoclonal.

In a further aspect of the invention, a method of identifying a cancer that is suitable for treatment with an antagonist of Notch3 is provided, the method comprising contacting a sample of the cancer with the antibody of claim 15, and determining whether significantly increased levels of activated Notch3 are present in the sample, wherein the presence of significantly increased levels of activated Notch3 indicates that the cancer is suitable for treatment with an antagonist of Notch3. In certain embodiments, the cancer is GSI-responsive

The above and further aspects and embodiments of the invention are provided herein.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A-1D shows an alignment of human Notch1 (SEQ ID NO:1) and mouse Notch1 (SEQ ID NO:2), with motifs and $_{20}$ other features indicated.

FIG. 2 shows the sequence of human Notch3 (SEQ ID NO:3). The EGF repeat region extends from amino acid residue 43 to 1383; the LNR modules extend from amino acid residue 1384 to 1503, with LNR-A extending from amino 25 acid residues 1384-1422; and the dimerization domain extends from amino acid residue 1504 to 1640, with HD-C extending from amino acid residues 1572-1640.

FIG. 3A-3D shows that the T-ALL cell line, P-12 Ichikawa, is resistant to both GSI (DAPT) and anti-NRR1 (α -N1).

FIG. 4A-4D shows that the T-ALL cell line, HPB-ALL, is sensitive to both GSI (DAPT) and anti-NRR1 (α -N1), as evidenced by the accumulation of cells in G0/G1 and the reduction of cells in S/G2/M, relative to control cells.

FIG. 5A-5D shows that the T-ALL cell line, TALL-1, is 35 sensitive to GSI but resistant to anti-NRR1 (α -N1).

FIG. 6 shows that cell size measurements reflect the three classes of T-ALL identified in FIGS. 3-5.

FIG. 7 shows that staining with Annexin V (marker for apoptosis) and 7-AAD (marker for cell death) reflects the 40 three classes of T-ALL identified in FIGS. 3-5.

FIG. **8**, left panel, shows that Ki-67 staining (marker for cell proliferation) reflects the three classes of T-ALL identified in FIGS. **3-5**. Left-shifted peaks indicate lower staining for Ki-67 and decreased proliferation relative to right-shifted 45 peaks. FIG. **8**, right panel, shows that decreased staining for Ki-67 (i.e., decreased proliferation) correlates inversely with the number of Annexin V/7-AAD double negative (i.e., non-apoptotic) cells.

FIG. 9A-9F shows that the TALL-1 cell line is partially 50 sensitive to anti-NRR3 (α -N3) and sensitive to treatment with anti-NRR1 (α -N1) and anti-NRR3.

FIG. 10A-10F shows that the T-ALL cell line, CCRF-CEM, is resistant to both GSI, anti-NRR1 (α -N1) and anti-NRR3 (α -N3).

FIG. 11A-11F shows that the HPB-ALL cell line is sensitive to anti-NRR1 (α -N1) but not anti-NRR3 (α -N3).

FIG. 12 shows an immunoblot using an antibody that recognizes activated Notch3 ICD (α -Notch3 ICD), which detects activated Notch3 ICD in the nuclear fraction of Jag 60 1-stimulated MDA-MB-468 cells.

FIG. 13 shows that the TALL-1 cell line expresses high levels of cleaved, activated Notch3 (lower panel), which can be blocked by DAPT but not anti-NRR1 (α -N1), whereas the HPB-ALL cell line expresses high levels of cleaved, activated 65 Notch1, which can be blocked by DAPT and anti-NRR1 (α -N1).

6

FIG. 14 shows a graph of the results of the experiments depicted in FIG. 9A-9F.

DETAILED DESCRIPTION OF EMBODIMENTS

I. Definitions

For purposes of interpreting this specification, the following definitions will apply and whenever appropriate, terms used in the singular will also include the plural and vice versa. In the event that any definition set forth below conflicts with any document incorporated herein by reference, the definition set forth below shall control.

The term "Notch," as used herein, refers, unless specifically or contextually indicated otherwise, to any native or variant (whether native or synthetic) Notch polypeptide (Notch1-4). The term "native sequence" specifically encompasses naturally occurring truncated forms (e.g., an extracellular domain sequence or a transmembrane subunit sequence), naturally occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants. The term "wild-type Notch" generally refers to a polypeptide comprising an amino acid sequence of a naturally occurring, non-mutated Notch protein. The term "wild-type Notch sequence" generally refers to an amino acid sequence found in a naturally occurring, non-mutated Notch.

The term "Notch1," as used herein, refers, unless specifically or contextually indicated otherwise, to any native or variant (whether native or synthetic) Notch1 polypeptide. The term "native sequence" specifically encompasses naturally occurring truncated forms (e.g., an extracellular domain sequence or a transmembrane subunit sequence), naturally occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants. The term "wild-type Notch1" generally refers to a polypeptide comprising an amino acid sequence of a naturally occurring, non-mutated Notch1 protein. The term "wild type Notch1 sequence" generally refers to an amino acid sequence found in a naturally occurring, non-mutated Notch1.

The term "Notch1 ligand," as used herein, refers, unless specifically or contextually indicated otherwise, to any native or variant (whether native or synthetic) Notch1 ligand (for example, Jagged1, Jagged2, Delta-like1, Delta-like3, and/or Delta-like4) polypeptide. The term "native sequence" specifically encompasses naturally occurring truncated forms (e.g., an extracellular domain sequence or a transmembrane subunit sequence), naturally occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants. The term "wild-type Notch1 ligand" generally refers to a polypeptide comprising an amino acid sequence of a naturally occurring, non-mutated Notch1 ligand. The term "wild type Notch1 ligand sequence" generally refers to an amino acid sequence found in a naturally occurring, non-mutated Notch1 ligand.

The term "Notch1 NRR," as used herein, refers, unless specifically or contextually indicated otherwise, to any native or variant (whether native or synthetic) polypeptide region of Notch1 consisting of the 3 LNR modules and the amino acid sequences extending from the carboxy-terminus of the LNR modules to the transmembrane domain, such sequences including the HD domain (HD-N and HD-C). Exemplary Notch1 NRRs consist of the region from about amino acid 1446 to about amino acid 1735 of the human Notch1 amino acid sequence (SEQ ID NO:1, FIG. 1), and the region from about amino acid 1446 to about amino acid 1725 of the mouse Notch1 amino acid sequence (SEQ ID NO:2, FIG. 1). The term "native sequence Notch1 NRR" specifically encom-

passes naturally occurring truncated forms, naturally occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of a Notch1 NRR. The term "wild-type Notch1 NRR" generally refers to a naturally occurring, non-mutated Notch1 NRR. In some embodiments, 5 a Notch1 NRR is contained in a Notch1, such as, for example, a Notch1 processed at the 51, S2 and/or S3 site(s), or an unprocessed Notch1. In some embodiments, a Notch1 NRR contains two or more non-covalently linked fragments of a Notch1 NRR amino acid sequence, e.g., a fragment contain- 10 ing amino acids 1446 to 1664 of SEQ ID NO:1 non-covalently linked to a fragment containing amino acids 1665 to 1735 of SEQ ID NO:1. In another embodiment, a fragment containing amino acids 1446 to 1654 of SEQ ID NO:2 is non-covalently linked to a fragment containing amino acids 15 1655 to 1725 of SEQ ID NO:2.

The term "increased Notch1 signaling," as used herein, refers to an increase in Notch1 signaling that is significantly above the level of Notch1 signaling observed in a control under substantially identical conditions. In certain embodiments, the increase in Notch1 signaling is at least two fold, three fold, four fold, five fold, or ten fold above the level observed in the control.

The term "decreased Notch1 signaling," as used herein, refers to a decrease in Notch1 signaling that is significantly 25 below the level of Notch1 signaling observed in a control under substantially identical conditions. In certain embodiments, the decrease in Notch1 signaling is at least two fold, three fold, four fold, five fold, or ten fold below the level observed in the control.

In certain embodiments, Notch1 signaling (i.e., increased or decreased Notch1 signaling) is assessed using a suitable reporter assay, e.g., as described in Example 5 of U.S. Patent Application Publication No. US 2009/0081238 A1. In certain embodiments, Notch1 signaling is assessed using an in vitro 35 activity assay, such as the C2C12 myoblast differentiation assay or the HUVEC cell sprouting assay, as described in Examples 5 and 7, respectively, of US 2009/0081238 A1. In certain embodiments, Notch1 signaling is assessed using an in vivo xenograft model, such as the Calu6 and HM7 models 40 described in Example 8 of US 2009/0081238 A1.

The terms "Notch1 activating mutation" and "mutation that activates Notch1 signaling" refer to an insertion of one or more amino acids, a deletion of one or more amino acids, or a substitution of one or more amino acids relative to a Notch1 45 wild-type amino acid sequence that results in increased Notch1 signaling as compared with Notch1 signaling from the corresponding Notch1 wild-type amino acid sequence, or to an insertion of one or more nucleotides, a deletion of one or more nucleotides, a translocation of one or more nucleotides, 50 or a substitution of one or more nucleotides relative to a Notch1 wild-type nucleic acid sequence that results in increased Notch1 signaling in a cell containing the mutant nucleic acid sequence as compared with Notch1 signaling in a cell containing the corresponding Notch1 wild-type nucleic 55 acid sequence. Notch1 signaling from a Notch1 receptor containing an activating mutation may be ligand dependent or ligand independent.

The term "anti-Notch1 antibody" or "an antibody that binds to Notch1" refers to an antibody that is capable of 60 binding Notch1 with sufficient affinity such that the antibody is useful as a diagnostic and/or therapeutic agent in targeting Notch1. Preferably, the extent of binding of an anti-Notch1 antibody to an unrelated, non-Notch protein is less than about 10% of the binding of the antibody to Notch1 as measured, 65 e.g., by a radioimmunoassay (RIA). In certain embodiments, an antibody that binds to Notch1 has a dissociation constant

8

(Kd) of $\leq 1 \mu M$, $\leq 0.5 \mu M$, $\leq 100 n M$, $\leq 50 n M$, $\leq 10 n M$, $\leq 5 n M$, $\leq 1 n M$, $\leq 0.5 n M$, or $\leq 0.1 n M$. In certain embodiments, an anti-Notch1 antibody binds to an epitope of Notch1 that is conserved among Notch1 from different species, e.g., rodents (mice, rats) and primates.

The term "anti-Notch1 NRR antibody" or "an antibody that binds to Notch1 NRR" refers to an antibody that is capable of binding Notch1 NRR with sufficient affinity such that the antibody is useful as a diagnostic and/or therapeutic agent in targeting Notch1. Preferably, the extent of binding of an anti-Notch1 NRR antibody antibody to an unrelated, non-Notch protein is less than about 10% of the binding of the antibody to Notch1 NRR as measured, e.g., by a radioimmunoassay (RIA). In certain embodiments, an antibody that binds to Notch1 NRR has a dissociation constant (Kd) of ≤ 1 μ M, ≤ 0.5 μ M, ≤ 100 nM, ≤ 5 nM, ≤ 1 nM, ≤ 1 nM, ≤ 1 nM, or ≤ 0.1 nM. In certain embodiments, an anti-Notch1 NRR antibody binds to an epitope of Notch that is conserved among Notch from different species, e.g., rodents (mice, rats) and primates.

The term "Notch1-specific antagonist" refers to an agent that effects decreased Notch1 signaling, as defined above, and does not significantly affect signaling by another Notch receptor (Notch2, 3, or 4 in mammals).

An "anti-Notch1 antagonist antibody" is an anti-Notch1 antibody (including an anti-Notch1 NRR antibody) that effects decreased Notch1 signaling, as defined above.

Reference to "Antibody A, A-1, A-2, and A-3," singly or in any combination, means the heavy and light chain variable regions of the phage and reformatted antibodies designated Antibody A, A-1, A-2, and A-3 in U.S. Patent Application Publication No. US 2009/0081238 A1, unless otherwise indicated.

The term "Notch3," as used herein, refers, unless specifically or contextually indicated otherwise, to any native or variant (whether native or synthetic) Notch3 polypeptide. The term "native sequence" specifically encompasses naturally occurring truncated forms (e.g., an extracellular domain sequence or a transmembrane subunit sequence), naturally occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants. The term "wild-type Notch3" generally refers to a polypeptide comprising an amino acid sequence of a naturally occurring, non-mutated Notch3 protein. The term "wild type Notch3 sequence" generally refers to an amino acid sequence found in a naturally occurring, non-mutated Notch3.

The term "Notch3 ligand," as used herein, refers, unless specifically or contextually indicated otherwise, to any native or variant (whether native or synthetic) Notch3 ligand (for example, Jagged1, Jagged2, Delta-like1, Delta-like3, and/or Delta-like4) polypeptide. The term "native sequence" specifically encompasses naturally occurring truncated forms (e.g., an extracellular domain sequence or a transmembrane subunit sequence), naturally occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants. The term "wild-type Notch3 ligand" generally refers to a polypeptide comprising an amino acid sequence of a naturally occurring, non-mutated Notch3 ligand. The term "wild type Notch3 ligand sequence" generally refers to an amino acid sequence found in a naturally occurring, non-mutated Notch3 ligand.

The term "activated Notch3 ICD" refers to the Notch3 cleavage product that results from cleavage at site S3 and that is capable of translocating to the nucleus. In certain embodiments, activated Notch3 ICD consists of amino acids 1662-2321 of human Notch3 (SEQ ID NO:3).

The term "Notch3 NRR," as used herein, refers, unless specifically or contextually indicated otherwise, to any native or variant (whether native or synthetic) polypeptide region of Notch3 consisting of the 3 LNR modules and the amino acid sequences extending from the carboxy-terminus of the LNR modules to the transmembrane domain, such sequences including the HD domain (HD-N and HD-C). Exemplary Notch3 NRRs consist of the region from about amino acid 1384 to about amino acid 1640 of the human Notch3 amino acid sequence (SEQ ID NO:3, FIG. 2). The term "native sequence Notch3 NRR" specifically encompasses naturally occurring truncated forms, naturally occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of a Notch3 NRR. The term "wild-type Notch3 NRR" generally refers to a naturally occurring, nonmutated Notch3 NRR. In some embodiments, a Notch3 NRR is contained in a Notch3, such as, for example, a Notch3 processed at the 51, S2 and/or S3 site(s), or an unprocessed Notch3. In some embodiments, a Notch3 NRR contains two or more non-covalently linked fragments of a Notch3 NRR 20 amino acid sequence, e.g., a fragment containing amino acids 1384 to 1571 of human Notch3 (SEQ ID NO:3) non-covalently linked to a fragment containing amino acids 1572 to 1640 of human Notch3 (SEQ ID NO:3).

The term "increased Notch3 signaling," as used herein 25 refers to an increase in Notch3 signaling that is significantly above the level of Notch3 signaling observed in a control under substantially identical conditions. In certain embodiments, the increase in Notch3 signaling is at least two fold, three fold, four fold, five fold, or ten fold above the level 30 observed in the control.

The term "decreased Notch3 signaling," as used herein refers to a decrease in Notch3 signaling that is significantly below the level of Notch3 signaling observed in a control under substantially identical conditions. In certain embodiments, the decrease in Notch3 signaling is at least two fold, three fold, four fold, five fold, or ten fold below the level observed in the control.

In certain embodiments, Notch3 signaling (i.e., increased or decreased Notch3 signaling) is assessed using a suitable 40 reporter assay, e.g., as described in Example 5 of U.S. Patent Application Publication No. US 2008/0226621 A1. In certain embodiments, Notch3 signaling is assessed using an in vitro activity assay, such as the apoptosis, cell migration, invasion, and morphology assays described in Example 7 of U.S. Patent 45 Application Publication No. US 2008/0226621 A1. In certain embodiments, Notch3 signaling is assessed using an in vivo xenograft model, such as those described in Example 11 of US 2008/0226621 A1.

The term "anti-Notch3 antibody" or "an antibody that 50 binds to Notch3" refers to an antibody that is capable of binding Notch3 with sufficient affinity such that the antibody is useful as a diagnostic and/or therapeutic agent in targeting Notch3. Preferably, the extent of binding of an anti-Notch3 antibody to an unrelated, non-Notch protein is less than about 55 10% of the binding of the antibody to Notch3 as measured, e.g., by a radioimmunoassay (RIA). In certain embodiments, an antibody that binds to Notch3 NRR has a dissociation constant (Kd) of $\leq 1~\mu\text{M}, \leq 0.5~\mu\text{M}, \leq 100~\text{nM}, \leq 50~\text{nM}, \leq 10~\text{nM}, \leq 10~\text{nM}$ anti-Notch3 antibody binds to an epitope of Notch3 that is conserved among Notch3 from different species, e.g., rodents (mice, rats) and primates.

The term "anti-Notch3 NRR antibody" or "an antibody that binds to Notch3 NRR" refers to an antibody that is 65 capable of binding Notch3 NRR with sufficient affinity such that the antibody is useful as a diagnostic and/or therapeutic

10

agent in targeting Notch3. Preferably, the extent of binding of an anti-Notch3 NRR antibody to an unrelated, non-Notch protein is less than about 10% of the binding of the antibody to Notch3 NRR as measured, e.g., by a radioimmunoassay (RIA). In certain embodiments, an antibody that binds to Notch3 NRR has a dissociation constant (Kd) of $\leq 1~\mu\text{M}, \leq 0.5~\mu\text{M}, \leq 100~\text{nM}, \leq 5~\text{nM}, \leq 1~\text{nM}, \leq 0.5~\text{nM}, \text{or} \leq 0.1~\text{nM}$. In certain embodiments, an anti-Notch3 NRR antibody binds to an epitope of Notch3 that is conserved among Notch3 from different species, e.g., rodents (mice, rats) and primates.

The term "Notch3-specific antagonist" refers to an agent that effects decreased Notch3 signaling, as defined above, and does not significantly affect signaling by another Notch receptor (Notch1, 2, or 4 in mammals).

An "anti-Notch3 antagonist antibody" is an anti-Notch3 antibody (including an anti-Notch3 NRR antibody) that effects decreased Notch3 signaling, as defined above.

Reference to "antibody 256A-4 and 256A-8," singly or in combination, means the mouse monoclonal antibodies designated 256A-4 and 256A-8 in U.S. Patent Application Publication No. 2008/0226621 A1.

The term "antagonist" refers to an agent that significantly inhibits (either partially or completely) the biological activity of a target molecule.

An "antibody that binds activated Notch3 ICD" refers to an antibody that binds activated Notch3 ICD such that the antibody is useful in distinguishing activated Notch3 ICD from Notch3 comprising an intact NTM.

The term "antibody" herein is used in the broadest sense and specifically covers monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g. bispecific antibodies) formed from at least two intact antibodies, and antibody fragments so long as they exhibit the desired biological activity.

An "isolated" antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with research, diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In some embodiments, an antibody is purified (1) to greater than 95% by weight of antibody as determined by, for example, the Lowry method, and in some embodiments, to greater than 99% by weight; (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of, for example, a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using, for example, Coomassie blue or silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.

"Native antibodies" are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (V_H) followed by a number of constant domains. Each light chain has a variable domain at one end (V_L) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned

with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains.

The "variable region" or "variable domain" of an antibody refers to the amino-terminal domains of the heavy or light 5 chain of the antibody. The variable domain of the heavy chain may be referred to as "VH." The variable domain of the light chain may be referred to as "VL." These domains are generally the most variable parts of an antibody and contain the antigen-binding sites.

The term "variable" refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. However, the variability is not evenly distributed throughout the variable 15 domains of antibodies. It is concentrated in three segments called hypervariable regions (HVRs) both in the light-chain and the heavy-chain variable domains. The more highly conserved portions of variable domains are called the framework regions (FR). The variable domains of native heavy and light 20 chains each comprise four FR regions, largely adopting a beta-sheet configuration, connected by three HVRs, which form loops connecting, and in some cases forming part of, the beta-sheet structure. The HVRs in each chain are held together in close proximity by the FR regions and, with the 25 HVRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, National Institute of Health, Bethesda, Md. (1991)). The constant domains are not involved directly in the binding of an anti- 30 body to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.

The "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly 35 distinct types, called kappa (κ) and lambda (λ) , based on the amino acid sequences of their constant domains.

Depending on the amino acid sequences of the constant domains of their heavy chains, antibodies (immunoglobulins) can be assigned to different classes. There are five major 40 classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG₁, IgG₂, IgG₃, IgG₄, IgA₁, and IgA₂. The heavy chain constant domains that correspond to the different classes of immunoglobulins are called $\alpha, \delta, \epsilon, \gamma$, and μ , respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known and described generally in, for example, Abbas et al. *Cellular and Mol. Immunology*, 4th ed. (W.B. Saunders, Co., 2000). An antibody may be part of a larger fusion molecule, 50 formed by covalent or non-covalent association of the antibody with one or more other proteins or peptides.

The terms "full length antibody," "intact antibody" and "whole antibody" are used herein interchangeably to refer to an antibody in its substantially intact form, not antibody 55 fragments as defined below. The terms particularly refer to an antibody with heavy chains that contain an Fc region.

A "naked antibody" for the purposes herein is an antibody that is not conjugated to a cytotoxic moiety or radiolabel.

"Antibody fragments" comprise a portion of an intact antibody, preferably comprising the antigen binding region thereof. Examples of antibody fragments include Fab, Fab', F(ab')₂, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.

Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, each with a 12

single antigen-binding site, and a residual "Fc" fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F(ab')₂ fragment that has two antigencombining sites and is still capable of cross-linking antigen.

"Fv" is the minimum antibody fragment which contains a complete antigen-binding site. In one embodiment, a twochain Fv species consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. In a single-chain Fv (scFv) species, one heavy- and one light-chain variable domain can be covalently linked by a flexible peptide linker such that the light and heavy chains can associate in a "dimeric" structure analogous to that in a twochain Fv species. It is in this configuration that the three HVRs of each variable domain interact to define an antigenbinding site on the surface of the VH-VL dimer. Collectively, the six HVRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three HVRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

The Fab fragment contains the heavy- and light-chain variable domains and also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab')₂ antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

"Single-chain Fv" or "scFv" antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Generally, the scFv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding. For a review of scFv, see, e.g., Pluckthün, in *The Pharmacology of Monoclonal Antibodies*, vol. 113, Rosenburg and Moore eds., (Springer-Verlag, New York, 1994), pp. 269-315.

The term "diabodies" refers to antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) in the same polypeptide chain (VH-VL). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies may be bivalent or bispecific. Diabodies are described more fully in, for example, EP 404,097; WO 1993/01161; Hudson et al., *Nat. Med.* 9:129-134 (2003); and Hollinger et al., *Proc. Natl. Acad. Sci. USA* 90: 6444-6448 (1993). Triabodies and tetrabodies are also described in Hudson et al., *Nat. Med.* 9:129-134 (2003).

The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible mutations, e.g., naturally occurring mutations, that may be present in minor amounts. Thus, the modifier "monoclonal" indicates the character of the antibody as not being a mixture of discrete antibodies. In certain embodiments, such a monoclonal antibody typically includes an antibody comprising a polypeptide sequence that binds a target, wherein the target-binding polypeptide sequence was obtained by a process that includes the selection of a single target binding polypeptide sequence

from a plurality of polypeptide sequences. For example, the selection process can be the selection of a unique clone from a plurality of clones, such as a pool of hybridoma clones, phage clones, or recombinant DNA clones. It should be understood that a selected target binding sequence can be 5 further altered, for example, to improve affinity for the target, to humanize the target binding sequence, to improve its production in cell culture, to reduce its immunogenicity in vivo, to create a multispecific antibody, etc., and that an antibody comprising the altered target binding sequence is also a 10 monoclonal antibody of this invention. In contrast to polyclonal antibody preparations, which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on 15 an antigen. In addition to their specificity, monoclonal antibody preparations are advantageous in that they are typically uncontaminated by other immunoglobulins.

The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homoge- 20 neous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by a variety of techniques, including, for example, the hybridoma 25 method (e.g., Kohler and Milstein, Nature, 256:495-97 (1975); Hongo et al., Hybridoma, 14 (3): 253-260 (1995), Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas 30 563-681 (Elsevier, N.Y., 1981)), recombinant DNA methods (see, e.g., U.S. Pat. No. 4,816,567), phage-display technologies (see, e.g., Clackson et al., Nature, 352: 624-628 (1991); Marks et al., J. Mol. Biol. 222: 581-597 (1992); Sidhu et al., J. Mol. Biol. 338(2): 299-310 (2004); Lee et al., J. Mol. Biol. 35 340(5): 1073-1093 (2004); Fellouse, Proc. Natl. Acad. Sci. USA 101 (34): 12467-12472 (2004); and Lee et al., J. Immunol. Methods 284 (1-2): 119-132 (2004), and technologies for producing human or human-like antibodies in animals that have parts or all of the human immunoglobulin loci or genes 40 encoding human immunoglobulin sequences (see, e.g., WO 1998/24893; WO 1996/34096; WO 1996/33735; WO 1991/ 10741; Jakobovits et al., Proc. Natl. Acad. Sci. USA 90: 2551 (1993); Jakobovits et al., Nature 362: 255-258 (1993); Bruggemann et al., Year in Immunol. 7:33 (1993); U.S. Pat. 45 Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; and 5.661.016; Marks et al., Bio/Technology 10: 779-783 (1992); Lonberg et al., Nature 368: 856-859 (1994); Morrison, Nature 368: 812-813 (1994); Fishwild et al., Nature Biotechnol. 14: 845-851 (1996); Neuberger, Nature Biotech- 50 nol. 14: 826 (1996); and Lonberg and Huszar, Intern. Rev. Immunol. 13: 65-93 (1995).

The monoclonal antibodies herein specifically include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding 55 sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as 60 well as fragments of such antibodies, so long as they exhibit the desired biological activity (see, e.g., U.S. Pat. No. 4,816, 567; and Morrison et al., *Proc. Natl. Acad. Sci. USA* 81:6851-6855 (1984)). Chimeric antibodies include PRIMATIZED® antibodies wherein the antigen-binding region of the antibody is derived from an antibody produced by, e.g., immunizing macaque monkeys with the antigen of interest.

14

"Humanized" forms of non-human (e.g., murine) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin. In one embodiment, a humanized antibody is a human immunoglobulin (recipient antibody) in which residues from a HVR of the recipient are replaced by residues from a HVR of a nonhuman species (donor antibody) such as mouse, rat, rabbit, or nonhuman primate having the desired specificity, affinity, and/or capacity. In some instances, FR residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications may be made to further refine antibody performance. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin, and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally will also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see, e.g., Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992). See also, e.g., Vaswani and Hamilton, Ann. Allergy, Asthma & Immunol. 1:105-115 (1998); Harris, Biochem. Soc. Transactions 23:1035-1038 (1995); Hurle and Gross, Curr. Op. Biotech. 5:428-433 (1994); and U.S. Pat. Nos. 6,982,321 and 7,087,409.

A "human antibody" is one which possesses an amino acid sequence which corresponds to that of an antibody produced by a human and/or has been made using any of the techniques for making human antibodies as disclosed herein. This definition of a human antibody specifically excludes a humanized antibody comprising non-human antigen-binding residues. Human antibodies can be produced using various techniques known in the art, including phage-display libraries. Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991). Also available for the preparation of human monoclonal antibodies are methods described in Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985); Boerner et al., J. Immunol., 147 (1):86-95 (1991). See also van Dijk and van de Winkel, Curr. Opin. Pharmacol., 5: 368-74 (2001). Human antibodies can be prepared by administering the antigen to a transgenic animal that has been modified to produce such antibodies in response to antigenic challenge, but whose endogenous loci have been disabled, e.g., immunized xenomice (see, e.g., U.S. Pat. Nos. 6,075,181 and 6,150,584 regarding XENOM-OUSETM technology). See also, for example, Li et al., *Proc*. Natl. Acad. Sci. USA, 03:3557-3562 (2006) regarding human antibodies generated via a human B-cell hybridoma technology.

The term "hypervariable region," "HVR," or "HV," when used herein refers to the regions of an antibody variable domain which are hypervariable in sequence and/or form structurally defined loops. Generally, antibodies comprise six HVRs; three in the VH (H1, H2, H3), and three in the VL (L1, L2, L3). In native antibodies, H3 and L3 display the most diversity of the six HVRs, and H3 in particular is believed to play a unique role in conferring fine specificity to antibodies. See, e.g., Xu et al., *Immunity* 13:37-45 (2000); Johnson and Wu, in *Methods in Molecular Biology* 248:1-25 (Lo, ed., Human Press, Totowa, N.J., 2003). Indeed, naturally occurring camelid antibodies consisting of a heavy chain only are functional and stable in the absence of light chain. See, e.g.,

Hamers-Casterman et al., *Nature* 363:446-448 (1993); Sheriff et al., *Nature Struct. Biol.* 3:733-736 (1996).

A number of HVR delineations are in use and are encompassed herein. The Kabat Complementarity Determining Regions (CDRs) are based on sequence variability and are the most commonly used (Kabat et al., *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). Chothia refers instead to the location of the structural loops (Chothia and Lesk *J. Mol. Biol.* 196:901-917 (1987)). The AbM HVRs represent a compromise between the Kabat HVRs and Chothia structural loops, and are used by Oxford Molecular's AbM antibody modeling software. The "contact" HVRs are based on an analysis of the available complex crystal structures. The residues from each of these HVRs are noted below.

Loop	Kabat	AbM	Chothia	Contact	
L1	L24-L34	L24-L34	L26-L32	L30-L36	
L2	L50-L56	L50-L56	L50-L52	L46-L55	
L3	L89-L97	L89-L97	L91-L96	L89-L96	
H1	H31-H35B	H26-H35B	H26-H32	H30-H35B	
(Kabat Numbering)					
H1 H31-H35 H26-H35 (Chothia N			H26-H32 nbering)	H30-H35	
H2	H50-H65	H50-H58	H53-H55	H47-H58	
H3	H95-H102	H95-H102	H96-H101	H93-H101	

HVRs may comprise "extended HVRs" as follows: 24-36 or 24-34 (L1), 46-56 or 50-56 (L2) and 89-97 or 89-96 (L3) in the VL and 26-35 (H1), 50-65 or 49-65 (H2) and 93-102, 94-102, or 95-102 (H3) in the VH. The variable domain residues are numbered according to Kabat et al., supra, for 35 each of these definitions.

"Framework" or "FR" residues are those variable domain residues other than the HVR residues as herein defined.

The term "variable domain residue numbering as in Kabat" or "amino acid position numbering as in Kabat," and varia- 40 tions thereof, refers to the numbering system used for heavy chain variable domains or light chain variable domains of the compilation of antibodies in Kabat et al., supra. Using this numbering system, the actual linear amino acid sequence may contain fewer or additional amino acids corresponding to a 45 shortening of, or insertion into, a FR or HVR of the variable domain. For example, a heavy chain variable domain may include a single amino acid insert (residue 52a according to Kabat) after residue 52 of H2 and inserted residues (e.g. residues 82a, 82b, and 82c, etc. according to Kabat) after 50 heavy chain FR residue 82. The Kabat numbering of residues may be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a "standard" Kabat numbered sequence.

The Kabat numbering system is generally used when refering to a residue in the variable domain (approximately residues 1-107 of the light chain and residues 1-113 of the heavy chain) (e.g., Kabat et al., supra). The "EU numbering system" or "EU index" is generally used when referring to a residue in an immunoglobulin heavy chain constant region (e.g., the EU 60 index reported in Kabat et al., supra). The "EU index as in Kabat" refers to the residue numbering of the human IgG1 EU antibody. Unless stated otherwise herein, references to residue numbers in the variable domain of antibodies means residue numbering by the Kabat numbering system. Unless stated otherwise herein, references to residue numbers in the constant domain of antibodies means residue numbering by

16

the EU numbering system (e.g., see United States Patent Application Publication US 2008/0181888 A1, Figures for EU numbering).

An "affinity matured" antibody is one with one or more alterations in one or more HVRs thereof which result in an improvement in the affinity of the antibody for antigen, compared to a parent antibody which does not possess those alteration(s). In one embodiment, an affinity matured antibody has nanomolar or even picomolar affinities for the target antigen. Affinity matured antibodies may be produced using certain procedures known in the art. For example, Marks et al. Bio/Technology 10:779-783 (1992) describe affinity maturation by VH and VL domain shuffling. Random mutagenesis of HVR and/or framework residues is described by, for example, in Barbas et al. Proc Nat. Acad. Sci. USA 91:3809-3813 (1994); Schier et al. Gene 169:147-155 (1995); Yelton et al. J. Immunol. 155:1994-2004 (1995); Jackson et al., J. Immunol. 154(7):3310-9 (1995); and Hawkins et al, J. Mol. Biol. 226: 889-896 (1992).

20 Antibody "effector functions" refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody, and vary with the antibody isotype. Examples of antibody effector functions include: C1q binding and complement dependent cytotoxicity (CDC); Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor); and B cell activation.

"Binding affinity" generally refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen). Unless indicated otherwise, as used herein, "binding affinity" refers to intrinsic binding affinity which reflects a 1:1 interaction between members of a binding pair (e.g., antibody and antigen). The affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (Kd). Affinity can be measured by common methods known in the art, including those described herein. Low-affinity antibodies generally bind antigen slowly and tend to dissociate readily, whereas high-affinity antibodies generally bind antigen faster and tend to remain bound longer. A variety of methods of measuring binding affinity are known in the art, any of which can be used for purposes of the present invention. Specific illustrative and exemplary embodiments for measuring binding affinity are described in the following.

In one embodiment, the "Kd" or "Kd value" according to this invention is measured by a radiolabeled antigen binding assay (RIA) performed with the Fab version of an antibody of interest and its antigen as described by the following assay. Solution binding affinity of Fabs for antigen is measured by equilibrating Fab with a minimal concentration of (125I)labeled antigen in the presence of a titration series of unlabeled antigen, then capturing bound antigen with an anti-Fab antibody-coated plate (see, e.g., Chen, et al., J. Mol. Biol. 293:865-881 (1999)). To establish conditions for the assay, MICROTITER® multi-well plates (Thermo Scientific) are coated overnight with 5 µg/ml of a capturing anti-Fab antibody (Cappel Labs) in 50 mM sodium carbonate (pH 9.6), and subsequently blocked with 2% (w/v) bovine serum albumin in PBS for two to five hours at room temperature (approximately 23° C.). In a non-adsorbent plate (Nunc #269620), 100 pM or 26 pM [125I]-antigen antigen are mixed with serial dilutions of a Fab of interest (e.g., consistent with assessment of the anti-VEGF antibody, Fab-12, in Presta et al., Cancer Res. 57:4593-4599 (1997)). The Fab of interest is then incubated overnight; however, the incubation may con-

tinue for a longer period (e.g., about 65 hours) to ensure that equilibrium is reached. Thereafter, the mixtures are transferred to the capture plate for incubation at room temperature (e.g., for one hour). The solution is then removed and the plate washed eight times with 0.1% TWEEN-20TM in PBS. When 5 the plates have dried, 150 $\mu l/well$ of scintillant (MICROS-CINT-20TM; Packard) is added, and the plates are counted on a TOPCOUNTTM gamma counter (Packard) for ten minutes. Concentrations of each Fab that give less than or equal to 20% of maximal binding are chosen for use in competitive binding 10 assays.

According to another embodiment, the Kd or Kd value is measured by using surface plasmon resonance assays using a BIACORE®-2000 or a BIACORE®-3000 (BIAcore, Inc., Piscataway, N.J.) at 25° C. with immobilized antigen CM5 chips at ~10 response units (RU). Briefly, carboxymethylated dextran biosensor chips (CM5, BIACORE, Inc.) are activated N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) according to the supplier's instructions. Antigen is diluted 20 with 10 mM sodium acetate, pH 4.8, to 5 μg/ml (~0.2 μM) before injection at a flow rate of 5 µl/minute to achieve approximately 10 response units (RU) of coupled protein. Following the injection of antigen, 1 M ethanolamine is injected to block unreacted groups. For kinetics measure- 25 ments, two-fold serial dilutions of Fab (0.78 nM to 500 nM) are injected in PBS with 0.05% TWEEN-20™ surfactant (PBST) at 25° C. at a flow rate of approximately 25 $\mu l/min.$ Association rates (k_{on}) and dissociation rates (k_{of}) are calculated using a simple one-to-one Langmuir binding model 30 (BIACORE® Evaluation Software version 3.2) by simultaneously fitting the association and dissociation sensorgrams. The equilibrium dissociation constant (Kd) is calculated as the ratio k_{off}/k_{on} . See, e.g., Chen et al., J. Mol. Biol. 293:865-881 (1999). If the on-rate exceeds $10^6 \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$ by the surface 35 plasmon resonance assay above, then the on-rate can be determined by using a fluorescent quenching technique that measures the increase or decrease in fluorescence emission intensity (excitation=295 nm; emission=340 nm, 16 nm bandpass) at 25° C. of a 20 nM anti-antigen antibody (Fab form) in 40 PBS, pH 7.2, in the presence of increasing concentrations of antigen as measured in a spectrometer, such as a stop-flow equipped spectrophometer (Aviv Instruments) or a 8000-series SLM-AMINCOTM spectrophotometer (ThermoSpectronic) with a stirred cuvette.

An "on-rate," "rate of association," "association rate," or "k_{on}" according to this invention can also be determined as described above using a BIACORE®-2000 or a BIACORE®-3000 system (BIAcore, Inc., Piscataway, N.J.).

A "disorder" is any condition or disease that would benefit 50 from treatment with a composition or method of the invention. This includes chronic and acute disorders including those pathological conditions which predispose the mammal to the disorder in question. Non-limiting examples of disorders to be treated herein include conditions such as cancer. 55

The terms "cell proliferative disorder" and "proliferative disorder" refer to disorders that are associated with some degree of abnormal cell proliferation. In one embodiment, the cell proliferative disorder is cancer.

"Tumor," as used herein, refers to all neoplastic cell growth 60 and proliferation, whether malignant or benign, and all precancerous and cancerous cells and tissues. The terms "cancer," "cancerous," "cell proliferative disorder," "proliferative disorder," and "tumor" are not mutually exclusive as referred to herein.

The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically charac-

18

terized by unregulated cell growth/proliferation. Examples of cancer include but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia. More particular examples of such cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, gastric cancer, melanoma, and various types of head and neck cancer. Dysregulation of angiogenesis can lead to many disorders that can be treated by compositions and methods of the invention. These disorders include both non-neoplastic and neoplastic conditions. Neoplastics include but are not limited those described above. Non-neoplastic disorders include but are not limited to undesired or aberrant hypertrophy, arthritis, rheumatoid arthritis (RA), psoriasis, psoriatic plaques, sarcoidosis, atherosclerosis, atherosclerotic plaques, diabetic and other proliferative retinopathies including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, diabetic macular edema, corneal neovascularization, corneal graft neovascularization, corneal graft rejection, retinal/choroidal neovascularization, neovascularization of the angle (rubeosis), ocular neovascular disease, vascular restenosis, arteriovenous malformations (AVM), meningioma, hemangioma, angiofibroma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, chronic inflammation, lung inflammation, acute lung injury/ARDS, sepsis, primary pulmonary hypertension, malignant pulmonary effusions, cerebral edema (e.g., associated with acute stroke/closed head injury/ trauma), synovial inflammation, pannus formation in RA, myositis ossificans, hypertropic bone formation, osteoarthritis (OA), refractory ascites, polycystic ovarian disease, endometriosis, 3rd spacing of fluid diseases (pancreatitis, compartment syndrome, burns, bowel disease), uterine fibroids, premature labor, chronic inflammation such as IBD (Crohn's disease and ulcerative colitis), renal allograft rejection, inflammatory bowel disease, nephrotic syndrome, undesired or aberrant tissue mass growth (non-cancer), hemophilic joints, hypertrophic scars, inhibition of hair growth, Osler-Weber syndrome, pyogenic granuloma retrolental fibroplasias, scleroderma, trachoma, vascular adhesions, synovitis, dermatitis, preeclampsia, ascites, pericardial effusion (such as that associated with pericarditis), and pleural effusion.

The term "leukemia" refers to an acute or chronic disease characterized by an abnormal increase in the number of white blood cells (leukocytes) in hemopoietic tissues, other organs, and often in the blood. Leukemias include, but are not limited to, acute lymphoblastic leukemia (ALL), including T-lineage acute lymphoblastic leukemia (T-ALL) as well as other lymphocytic leukemias; adult T-cell leukemia/lymphoma; chronic myeloid (myelogenous) leukemia (CML), acute myeloid (myelogenous) leukemia (AML), and other granulocytic leukemias; and lineage switch leukemias.

The term "T-cell leukemia" refers to a leukemia characterized by an abnormal increase in the number of T-lineage lymphoblasts or T-lymphocytes.

The term "T-cell progenitor leukemia" refers to a leukemia characterized by an abnormal increase in the number of T-lineage lymphoblasts.

A "GSI-responsive cancer" is a cancer (such as a leukemia) that responds to a gamma secretase inhibitor or that would respond to a gamma secretase inhibitor if treated with such.

A cancer that "responds" to a therapeutic agent is one that shows a significant decrease in cancer or tumor progression, including but not limited to, (1) inhibition, to some extent, of tumor growth, including slowing down and complete growth arrest; (2) reduction in the number of cancer or tumor cells; (3) reduction in tumor size; (4) inhibition (i.e., reduction, slowing down or complete stopping) of cancer cell infiltration into adjacent peripheral organs and/or tissues; and/or (5) inhibition (i.e. reduction, slowing down or complete stopping) of metastasis.

A cancer that "does not respond to a Notch1-specific antagonist" is a cancer that does not respond to treatment with a Notch1-specific antagonist (in the absence of any other Notch antagonist, i.e., a Notch2, Notch3 or Notch4 antagonist), or that would not respond to such treatment if given.

As used herein, "treatment" (and variations such as "treat" or "treating") refers to clinical intervention in an attempt to 20 alter the natural course of the individual or cell being treated, and can be performed either for prophylaxis or during the course of clinical pathology. Desirable effects of treatment include preventing occurrence or recurrence of disease, alleviation of symptoms, diminishment of any direct or indirect 25 pathological consequences of the disease, preventing metastasis, decreasing the rate of disease progression, amelioration or palliation of the disease state, and remission or improved prognosis. In some embodiments, antibodies of the invention are used to delay development of a disease or disorder.

An "individual," "subject," or "patient" is a vertebrate. In certain embodiments, the vertebrate is a mammal. Mammals include, but are not limited to, farm animals (such as cows), sport animals, pets (such as cats, dogs, and horses), primates, ³⁵ mice and rats. In certain embodiments, a mammal is a human.

The term "pharmaceutical formulation" refers to a preparation which is in such form as to permit the biological activity of the active ingredient to be effective, and which contains no additional components which are unacceptably toxic to a subject to which the formulation would be administered. Such formulations may be sterile.

An "effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic or prophylactic result.

II. Embodiments of the Invention

The present invention relates, in part, to the characterization of different classes of T-ALL. One class of T-ALL is 50 sensitive to treatment with GSI, which is a pan-Notch inhibitor, and is also sensitive to treatment with a Notch1-specific antagonist, indicating that Notch1 specifically drives this class of T-ALL. Another class of T-ALL is sensitive to treatment with GSI, but insensitive (i.e., resistant) to treatment 55 with a Notch1-specific antagonist, indicating that an alternative or additional Notch receptor may drive this class of T-ALL. As shown herein, the inventors have discovered that this latter class of T-ALL is partially sensitive to treatment with a Notch3-specific antagonist, and even more sensitive to 60 a combination of a Notch1-specific antagonist and a Notch3specific antagonist. These results suggest a role for both Notch1 and Notch3 in leukemias, particularly T-cell and T-cell progenitor leukemias such as T-ALL.

A. Methods of Treatment

1. Treatment of Cancer with a Notch3-Specific Antagonist, Singly or in Combination with a Notch1-Specific Antagonist 20

In various aspects of the invention, methods of treating a GSI-responsive cancer are provided, the method comprising administering to a patient having such cancer an effective amount of a Notch3-specific antagonist. In certain embodiments, the GSI-responsive cancer is leukemia. In certain embodiments, the GSI-responsive cancer does not respond to a Notch1-specific antagonist, e.g., the cancer has significantly increased levels of activated Notch3 and/or the cancer has absent or reduced levels of activated Notch1. In a further embodiment, the method further comprises administering an effective amount of a Notch1-specific antagonist. These and further aspects of the invention are described below.

In a particular aspect of the invention, a method of treating a GSI-responsive leukemia that does not respond to a Notch1-specific antagonist is provided, the method comprising administering to a patient having such leukemia an effective amount of a Notch3-specific antagonist.

A GSI-responsive leukemia may be identified by various ways. For example, a patient having leukemia may be treated with a GSI to determine whether or not the leukemia is GSIresponsive. Such a GSI may include any GSI that significantly inhibits Notch receptors. Such a GSI includes, but is not limited to, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-Sphenylglycine t-butyl ester (DAPT); dibenzazepine; MK-0752 (Merck); the tripeptide z-Leu-Leu-Nle-CHO (Curry et al., Oncogene 24:6333-6344); and cbz-IL-CHO (Weijzen et al., Nat. Med. 8:979-986, 2002). It is noted, however, that a patient having leukemia need not have been treated with a GSI in order to determine whether the leukemia is GSI-responsive. Other methods may be employed. For example, leukemic cells removed from the patient may be assessed for cell proliferation or survival in the presence of a GSI, such as any of those listed above. In a further example, leukemic cells removed from the patient may be examined for increased Notch signaling by one or more Notch receptors, which would predict that the cells are GSI-responsive. For example, the cells may be assessed for the presence of a mutated, overexpressed, or activated Notch receptor. Methods similar to those described above may be used to determine whether any cancer is GSI-responsive.

A leukemia (e.g., a GSI-responsive leukemia) may be identified as one that does not respond to a Notch1-specific antagonist by various ways. For example, a patient having a leukemia may be treated with a Notch1-specific antagonist to 45 determine whether or not the leukemia responds to the Notch1-specific antagonist. In certain embodiments, the Notch1-specific antagonist to which a leukemia does not respond is an anti-Notch1 antagonist antibody. In one such embodiment, the anti-Notch1 antagonist antibody is an antibody that binds to the extracellular domain of Notch1 and effects decreased Notch1 signaling. In one such embodiment, the anti-Notch1 antagonist antibody is an anti-Notch1 NRR antibody. Anti-Notch1 NRR antibodies include, but are not limited to, any of the anti-Notch1 NRR antibodies disclosed in U.S. Application Publication No. US 2009/0081238 A1, which is expressly incorporated by reference herein in its entirety. Such antibodies include, but are not limited to, anti-Notch1 NRR antibodies that bind to Notch1 NRR with an affinity of ≤0.1 µM; anti-Notch1 NRR antibodies that bind to LNR-A, LNR-B and HD-C of the Notch1 NRR; or a combination of the foregoing. Exemplary anti-Notch1 NRR antibodies include but are not limited to Antibodies A, A-1, A-2, and A-3 as described in US 2009/0081238 A1, or antibodies comprising the heavy and light chain variable region CDRs of an antibody selected from Antibody A, A-1, A-2, and A-3. In another such embodiment, an anti-Notch1 antagonist antibody is an anti-Notch1 antibody that binds to one or more

EGF-like repeats of Notch1. Examples of such antibodies are described in International Publication No. WO 2008/091641. In certain embodiments, an anti-Notch1 antibody that binds to one or more EGF-like repeats of Notch1 effects decreased Notch1 signaling by significantly blocking binding of ligand of Notch1.

It is noted, however, that a patient having leukemia need not have been treated with a Notch1-specific antagonist in order to determine whether the leukemia is one that does not respond to a Notch1-specific antagonist. Other methods may be employed. For example, leukemic cells removed from the patient may be assessed for absent or reduced Notch1 activation, or in certain embodiments, the presence of wild-type Notch1, which would predict that the leukemia is one that 15 does not respond to a Notch1-specific antagonist. For example, the cells may be assessed for absent or reduced Notch1 signaling by assessing absent or reduced transcription of Notch1 target genes, such as Hey1 and Hey2. In a further example, the cells may be assessed for absent or reduced 20 Notch1 signaling by detecting absent or reduced levels of an activated form of Notch1, e.g., by using an antibody specific for activated Notch1 such as anti-active Notch1 Val1744 (commercially available from Cell Signaling Technologies). In certain embodiments, a suitable comparator cell (positive 25 control) may be a leukemic cell that responds to a Notch1specific antagonist, e.g., a leukemic cell in which the Notch1 pathway is activated. Such a comparator cell may include, e.g., a T-ALL cell in which Notch1 is known to be overexpressed, mutated (e.g., having a Notch1 activating mutation) or activated (e.g., constitutively activated), such as an HPB-ALL cell. If leukemic cells removed from a patient have absent or significantly reduced levels of activated Notch1 compared to the comparator cell, then the patient's leukemia 35 is presumptively one that does not respond to a Notch1specific antagonist.

Leukemic cells may also be assessed for activation of Notch3, indicating that the Notch3 pathway is activated and that the leukemia is therefore predicted to be one that does not 40 respond to a Notch1-specific antagonist. In one embodiment, leukemic cells may be examined for the presence of overexpressed, mutated or activated Notch3. In certain embodiments, a suitable comparator cell (negative control) for purposes of assessing Notch3 activation status may be a 45 leukemic cell that responds to a Notch1-specific antagonist, e.g., a leukemic cell in which the Notch1 pathway is activated. Such a comparator cell may include, e.g., a T-ALL cell in which Notch1 is known to be overexpressed, mutated or activated such as an HPB-ALL cell. In such a cell, Notch3 is 50 not expected to be significantly activated. Therefore, if leukemic cells removed from a patient have significantly increased levels of activated Notch3 compared to the comparator cell, then the patient's leukemia is presumptively one that does not respond to a Notch1-specific antagonist. In 55 certain other embodiments, a suitable comparator cell (positive control) may be a leukemic cell in which Notch3 is known to be overexpressed, mutated or activated, such as a TALL-1 cell. In such a cell, Notch3 is expected to have significantly increased levels of activated Notch3. Therefore, 60 if leukemic cells removed from a patient have comparable levels of activated Notch3 compared to the comparator cell, then the patient's leukemia is presumptively one that does not respond to a Notch1-specific antagonist. Methods similar to those described above can be used to determine whether any cancer is one that does not respond to a Notch1-specific antagonist.

22

A useful tool for assessing Notch3 activation status is the new anti-Notch3 ICD antibody described in the Examples, which binds to activated Notch3 ICD.

In certain embodiments, the Notch3-specific antagonist that is administered is an anti-Notch3 antagonist antibody. In one such embodiment, the anti-Notch3 antagonist antibody is an antibody that binds to the extracellular domain of Notch3 and effects decreased Notch3 signaling. In one such embodiment, the anti-Notch3 antagonist antibody is an anti-Notch3 NRR antibody. Anti-Notch3 NRR antibodies include, but are not limited to, any of the anti-Notch3 NRR antibodies disclosed in U.S. Patent Application Publication No. US 2008/ 0226621 A1, which is expressly incorporated by reference herein in its entirety. Such antibodies include, but are not limited to anti-Notch3 NRR antibodies that bind to the LNR-A and HD-C domains of Notch3 NRR. Exemplary anti-Notch3 NRR antibodies are monoclonal antibodies 256A-4 and 256A-8, as described in US 2008/0226621 A1, and humanized forms thereof, as well as anti-Notch3 NRR antibodies comprising the heavy and light chain variable region CDRs of antibody 256A-4 or 256A-8. In another such embodiment, an anti-Notch3 antagonist antibody is an anti-Notch3 antibody that binds to one or more EGF-like repeats of Notch3. Examples of such antibodies are described in Li et al., J. Biol. Chem. 283:8046-8054, 2008. In certain embodiments, an anti-Notch3 antibody that binds to one or more EGF-like repeats of Notch3 effects decreased Notch3 signaling by significantly blocking binding of ligand to Notch3.

In certain embodiments, a leukemia is a T-cell leukemia. In certain such embodiments, a T-cell leukemia is a T-cell progenitor leukemia. In certain such embodiments, a T-cell progenitor leukemia is T-ALL.

In further embodiments, a method of treating a GSI-responsive cancer that does not respond to a Notch1-specific antagonist is provided, the method comprising administering to a patient having such cancer an effective amount of a Notch3-specific antagonist, and further comprising administering to such patient an effective amount of a Notch-1 specific antagonist. In certain embodiments, the GSI-responsive cancer is a GSI-responsive leukemia. In certain embodiments, the Notch1-specific antagonist to be administered is an anti-Notch1 antagonist antibody. In one such embodiment, the anti-Notch1 antagonist antibody is an antibody that binds to the extracellular domain of Notch1 and effects decreased Notch1 signaling. In one such embodiment, the anti-Notch1 antagonist antibody is an anti-Notch1 NRR antibody. Anti-Notch1 NRR antibodies include, but are not limited to, any of the anti-Notch1 NRR antibodies disclosed in U.S. Application Publication No. US 2009/0081238 A1, which is expressly incorporated by reference herein. Such antibodies include, but are not limited to, anti-Notch1 NRR antibodies that bind to Notch1 NRR with an affinity of ≤0.1 µM; anti-Notch1 NRR antibodies that bind to LNR-A, LNR-B and HD-C of the Notch1 NRR; or a combination of the foregoing. Exemplary anti-Notch1 NRR antibodies include but are not limited to Antibodies A, A-1, A-2, and A-3 as described in US 2009/0081238 A1, or antibodies comprising the heavy and light chain variable region CDRs of an antibody selected from Antibody A, A-1, A-2, and A-3. In another such embodiment, the anti-Notch1 antagonist antibody is an anti-Notch1 antibody that binds to one or more EGF-like repeats of Notch1. Examples of such antibodies are described in International Publication No. WO 2008/091641. In certain embodiments, an anti-Notch1 antibody that binds to one or more EGF-like repeats of Notch1 effects decreased Notch1 signaling by significantly blocking binding of ligand to Notch1.

2. Treatment of Leukemia with a Notch1-Specific Antago-

Further aspects of the invention are based, in part, on the identification of a class of T-ALL that is responsive to GSI and is also responsive to a Notch1-specific antagonist, but is not 5 responsive to a Notch3-specific antagonist, indicating that Notch1 drives the T-ALL. In various aspects of the invention, methods of treating a GSI-responsive cancer are provided, the method comprising administering to a patient having such cancer an effective amount of a Notch1-specific antagonist. In 10 certain embodiments, the GSI-responsive cancer is leukemia. In certain embodiments, the GSI-responsive cancer does not respond to a Notch3-specific antagonist, e.g., the cancer has absent or reduced levels of activated Notch3 (e.g., as compared to a comparator cell that responds to a Notch3-specific 15 antagonist) and/or has significantly increased levels of activated Notch1 (e.g., as compared to a comparator cell that does not respond to a Notch1-specific antagonist).

In certain embodiments, the leukemia belongs to a class of leukemias characterized by sensitivity to GSI and sensitivity 20 to a Notch1-specific antagonist. In one embodiment, the leukemia is a T-cell leukemia. In one such embodiment, the T-cell leukemia is a T-cell progenitor leukemia. In one such embodiment, the T-cell leukemia is T-ALL. In another embodiment, the leukemia is characterized by a Notch1 acti- 25 vating mutation.

In certain embodiments, a Notch1-specific antagonist is any of those provided above. In further embodiments, a Notch3-specific antagonist is any of those provided above.

B. Compositions and Diagnostic Methods

The invention further provides an antibody that binds activated human Notch3 ICD. In one embodiment, the antibody binds to the peptide sequence VMVARRKREHSTLW (SEQ IDNO:4). In one embodiment, the antibody is monoclonal. In embodiments may be present alone or in combination.

Such an antibody is useful in diagnostic methods, e.g., to identify patient populations suitable for treatment with a Notch3-specific antagonist, as described above. Accordingly, in certain embodiments, a method of identifying a cancer 40 suitable for treatment with an antagonist of Notch3 is provided, the method comprising determining whether Notch3 is activated in the cancer. In one embodiment, the cancer is a GSI-responsive cancer. In another embodiment, the cancer is a leukemia. In another embodiment, the leukemia is a T-cell 45 leukemia. In one such embodiment, the T-cell leukemia is a T-cell progenitor leukemia. In one such embodiment, the T-cell leukemia is T-ALL.

In further embodiments, determining whether Notch3 is activated in the cancer comprises contacting a sample of the 50 cancer with an antibody that binds activated Notch3 ICD, and determining whether significantly increased levels of activated Notch3 (as reflected by levels of activated Notch3 ICD) are present, wherein the presence of significantly increased levels of activated Notch3 indicates that the cancer is suitable 55 for treatment with an antagonist of Notch3. To determine whether significantly increased levels of activated Notch3 are present in the sample, an appropriate comparator (positive control) may be, e.g., a sample from a cancer known to respond to an antagonist of Notch3. If the "test" sample and 60 the "control" sample contain comparable levels of activated Notch3, then the cancer from which the "test" sample was obtained is suitable for treatment with an antagonist of Notch3. Another appropriate comparator (negative control) may be, e.g., a sample from a cancer that does not to respond 65 to an antagonist of Notch3. If the "test" sample contains significantly increased levels of activated Notch3 compared

24

to the control sample, then the cancer from which the "test" sample was obtained is suitable for treatment with an antagonist of Notch3.

In certain embodiments of the above methods, an antagonist of Notch3 is a Notch3-specific antagonist. In certain embodiments, a Notch3-specific antagonist is any of those discussed above.

III. Examples

A. T-ALL Falls into Three Classes

Previous studies have shown that T-ALL cell lines may be sensitive or insensitive to treatment with GSI. For example, certain T-ALL cell lines are resistant to GSI despite expression of activating Notch1 mutations, possibly due to activation of a non-Notch pathway, e.g., a pathway that circumvents the need for Notch. (See, e.g., Palomero et al., Nat. Med. 13:1203-1210, 2007.) However, in one study, five of thirty T-ALL cell lines were GSI-sensitive, showing cell cycle arrest in response to GSI. (See Weng et al., Science, 306:269-271, 2004.) The studies reported below further explored the response of T-ALL cell lines not only to GSI, but also to Notch1- and Notch3-specific antagonists.

Three classes of T-ALL were characterized based on their sensitivity to GSI and to a Notch1-specific antagonist. The Notch1-specific antagonist used in the following studies was the anti-Notch1 NRR antibody, "Antibody A-2," the isolation and characterization of which are discussed in U.S. Patent Application Publication No. US 2009/0081238 A1. For convenience, "Antibody A-2" is referred to herein as "anti-NRR1," and is also referred to as "α-Notch1," "aNotch1," or " α -N1" in the figures.

FIGS. 3-5 presents the classification of three representative one embodiment, the antibody is polyclonal. The above 35 human T-ALL cell lines. Those cell lines include the P-12 Ichikawa cell line, the HPB-ALL cell line, and the TALL-1 cell line. The cells were grown for eight days in control conditions (DMSO alone (the vehicle for DAPT) or anti-gD (an isotype control antibody)); in the presence of the gammasecretase inhibitor, DAPT (5 µM); or in the presence of anti-NRR1 (5 µg/ml). The cells were fixed, stained with propidium iodide and prepared for FACS to analyze the cell cycle status, according to standard procedures. Growth sensitivity was assessed by examining whether a given treatment caused an increase in the percentage of cells in G0/G1 with a corresponding decrease in the percentage of cells in S/G2/M. The results show that P-12 Ichikawa cells are resistant to both DAPT and anti-NRR1 (FIG. 3A-3D), with no significant difference in cell cycle status among DAPT-treated, anti-NRR1-treated, and control (DMSO- and anti-gD-treated) cells. HPB-ALL cells are sensitive to both DAPT and anti-NRR1 (FIG. 4A-4D), with DAPT- and anti-NRR1-treated cells showing about 78% and 76% of cells in G0/G1, respectively, compared to about 33-34% of the control cells. TALL-1 cells are sensitive to DAPT but resistant to anti-NRR1 (FIG. 5A-5D), with about 87% of DAPT-treated cells in G0/G1, compared to about 55% of anti-NRR1-treated cells and about 53-54% of control cells. It is noted that Notch1 is not mutated in TALL-1 cells. Further studies revealed that a fourth cell line, CCRF-CEM, fell into the same class as P-12 Ichikawa cells (i.e., resistant to both GSI and anti-NRR1). (Data not shown and FIG. 10.)

As shown in FIG. 6, cell size measurements reflect these three classes of T-ALL. The P-12 Ichikawa cell line, the HPB-ALL cell line, and the TALL-1 cell line were grown for approximately one week in control conditions (DMSO alone (the vehicle for DAPT) or anti-gD (an isotype control anti-

body)); in the presence of the gamma-secretase inhibitor, DAPT (5 $\mu M)$; or in the presence of anti-NRR1 (5 $\mu g/ml$). Cell diameter was measured using a cell counter (Vi-Cell, Beckman Coulter). Consistent with the growth inhibition studies, the P-12 Ichikawa line is resistant to both DAPT and 5 anti-NRR1, as indicated by relatively consistent cell diameter among treated and control cells. HPB-ALL is sensitive to both DAPT and anti-NRR1, as indicated by the significantly smaller size of cells treated with those agents, respectively. TALL-1 is sensitive to DAPT but resistant to anti-NRR1, as indicated by the significantly smaller size of cells treated with DAPT but not with anti-NRR1 or control agents. These results are consistent with the growth studies described above.

As shown in FIG. 7, apoptosis measurements also reflect these three classes of T-ALL. The P-12 Ichikawa cell line, the HPB-ALL cell line, and the TALL-1 cell line were treated as described above for FIG. 6. The cells were analyzed by FACS, with staining for 7-AAD (cell death marker) on the x-axis of FIG. 7, and staining for Annexin V (marker for apoptosis) on the y-axis of FIG. 7. Based on the percentage of cells in the double positive population, treatment with either DAPT or anti-NRR1 increases apoptotic cell death in HPB-ALL cells. In contrast, P-12 Ichikawa cells are resistant to both treatments, whereas TALL-1 cells are sensitive to DAPT but not to anti-NRR1. These results are consistent with the growth studies and cell diameter measurements described above.

As shown in FIG. 8, the results of a cell proliferation assay also reflect these three classes of T-ALL. The P-12 Ichikawa cell line, the HPB-ALL cell line, and the TALL-1 cell line 30 were treated as described above for FIG. 6. The cells were analyzed by FACS using Ki-67 staining to mark proliferation (left panel). A shift in the FACS peak to the left indicates lower staining for Ki-67 and decreased proliferation, and conversely, a shift in the FACS peak to the right indicates 35 higher staining for Ki-67 and increased proliferation. Based on this proliferation assay, HPB-ALL was sensitive to both DAPT and anti-NRR1, TALL-1 was sensitive to DAPT but not anti-NRR1, and P-12 Ichikawa cells were resistant to both. Again, these results are consistent with those from the 40 other assays described above, as well as apoptosis measurements shown in the right panel of FIG. 8. That panel shows cell counts for Annexin V/7-AAD double negative (non-apoptotic) cells. Low cell counts (i.e., low numbers of Annexin V/7-AAD double negative (non-apoptotic) cells) indicate 45 increased apoptosis, which in turn correlate with decreased proliferation in the left hand panel.

B. GSI-Responsive, Anti-NRR1 Resistant TALL-1 Cells are Partially Sensitive to Anti-NRR3

As described above, two of the three classes of T-ALL, represented by HPB-ALL and TALL-1, are both sensitive to GSI but differ in that the former is sensitive to anti-NRR1, whereas the latter is not. Because sensitivity to GSI suggests 55 a role for one or more Notch receptors, we asked whether a Notch receptor in addition to or in the alternative to Notch1 plays a role in the resistance of the latter class of T-ALL to anti-Notch1 NRR. To address this question, CCRF-CEM cells, HPB-ALL cells, and TALL-1 cells were treated as 60 described for FIGS. 3-5, except that a Notch3-specific antagonist was also included at 10 µg/ml in a subset of the treatments to test whether growth depended on Notch3 signaling. The Notch3-specific antagonist used in these studies was mouse anti-human Notch3 monoclonal antibody 256A- 65 4, the isolation and characterization of which are discussed in U.S. Patent Application Publication No. US 2008/0226621

26

A1. For convenience, 256A-4 is referred to herein as "anti-NRR3," and is also referred to as " α -N3" in the figures.

The results indicate that growth of TALL-1 is partially sensitive to anti-NRR3 and even more sensitive to anti-NRR1 plus anti-NRR3 (see FIG. 9A-9F), suggesting that signaling through Notch3 as well as Notch1 explains why the line is sensitive to DAPT but not to anti-NRR1. Specifically, nearly 83% of TALL-1 cells were in G0/G1 after DAPT treatment, compared to about 53-54% for the control (DMSO- or α -gDtreated) cells. Treatment with anti-NRR3 resulted in about 61% of the cells in G0/G1, and addition of anti-NRR1 increased this figure to about 68%. In contrast, CCRF-CEM appears resistant to all of the tested treatments (FIG. 10A-10F), each showing from about 52-57% of the cells in G0/G1. HBP-ALL appears sensitive to both DAPT and anti-NRR1 treatment (each showing about 67% of cells in G0/G1), but not anti-NRR3 treatment (showing about 37% of cells in G0/G1) (FIG. 11A-11F).

The results of the above experiment in FIG. 9B-9F are replotted in FIG. 14. The TALL-1 cell cultures started with approximately 5×10⁵ cells/ml, and the y-axis is the number of cells/ml, in millions of cells, after treatment under the indicated conditions and as described for FIG. 9B-9F. FIG. 14 shows that anti-NRR1 and anti-NRR3 each individually resulted in lower cell counts. However the combination of anti-NRR1 and anti-NRR3 had a more pronounced effect in lowering cell counts, approaching the levels seen with DAPT.

C. Notch3 is Activated in Anti-NRR3-Sensitive Cells

To investigate the activation status of Notch3 in the three classes of T-ALL, a new anti-Notch3 ICD antibody was developed which recognizes cleaved (i.e., activated) Notch3 ICD. Using standard procedures, rabbit polyclonal antibodies were raised against a peptide corresponding to the N-terminus of the Notch3 ICD that is expected to result from gammasecretase cleavage at the site S3. The peptide sequence used was: VMVARRKREHSTLW (SEQ ID NO:4). The peptide was conjugated to BSA for the immunizations. Polyclonal antibodies were purified on a protein A column and then used for immunoblotting, as shown in FIG. 12. To test whether the antibody recognized nuclear, cleaved Notch3 ICD, the basal breast cancer cell line MDA-MB-468 was used. This line expresses high levels of Notch3. Cells were treated with immobilized Jag1 (R&D Systems) (or Fc as a control) to induce Notch signaling, and cytoplasmic (C) and nuclear (N) fractions were isolated at the indicated times following induction. As a control to examine the level of Notch3 ICD present without Jag1 induction, cells that were not induced were 50 treated with DAPT (5 μM), DMSO (vehicle for DAPT) or the proteasome inhibitor MG132 to stabilize the Notch3 ICD, as indicated. CREB and tubulin served as markers for nuclear and cytoplasmic proteins, respectively. The results in FIG. 12 show that the anti-Notch3 ICD antibody recognizes a band of the expected size that is localized to the nucleus and induced by Jag1.

This new anti-Notch3 ICD antibody was then used to investigate the activation status of Notch3 in the three classes of T-ALL. As shown in FIG. 13, nuclear fractions of P12-Ichikawa, HPB-ALL, and TALL-1 cells were immunoblotted with anti-Notch1 Val1744, a commercially available polyclonal antibody that recognizes cleaved, activated Notch1 ICD (Cell Signaling Technologies) (upper panel), or with the anti-Notch3 ICD antibody (α -N3 ICD Y935, lower panel). 3T3 cells expressing Notch1 (3T3-N1) and MDA-MB-468 (MB468) cells were used as controls. Consistent with the growth inhibition studies described in the previous figures,

TALL-1 expresses high levels of activated Notch3 but not activated Notch1 (compare TALL-1 lanes in lower and upper panels, respectively). Furthermore, production of activated Notch3 in TALL-1 could be blocked by DAPT but not anti-NRR1 (lower panel). Moreover, as expected, HPB-ALL cells express high levels of activated Notch1, which can be blocked by DAPT or anti-NRR1 antibody (see HPB-ALL lanes in upper panel). As to the controls, activated Notch1 is seen as a lighter, up-shifted band in the 3T3-N1 cells treated with Jagged (+jag) (upper panel). Additionally, activated Notch3 is seen as a faint but detectable band in the MDA-MB-468 cells

treated with an anti-Notch3 agonist antibody (A13, described in U.S. Patent Application Publication US 2008/0118520 A1 as 256A-13) in the absence of DAPT (lower panel).

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, the descriptions and examples should not be construed as limiting the scope of the invention. The disclosures of all patent and scientific literatures cited herein are expressly incorporated in their entirety by reference.

SEQUENCE LISTING

```
<160> NUMBER OF SEO ID NOS: 4
<210> SEO ID NO 1
<211> LENGTH: 2555
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 1
Met Pro Pro Leu Leu Ala Pro Leu Cys Leu Ala Leu Leu Pro Ala
1 5 10 15
Leu Ala Ala Arg Gly Pro Arg Cys Ser Gln Pro Gly Glu Thr Cys Leu 20 25 30
Asn Gly Gly Lys Cys Glu Ala Ala Asn Gly Thr Glu Ala Cys Val Cys 35 40 45
Gly Gly Ala Phe Val Gly Pro Arg Cys Gln Asp Pro Asn Pro Cys Leu
Ser Thr Pro Cys Lys Asn Ala Gly Thr Cys His Val Val Asp Arg Arg
Gly Val Ala Asp Tyr Ala Cys Ser Cys Ala Leu Gly Phe Ser Gly Pro
Leu Cys Leu Thr Pro Leu Asp Asn Ala Cys Leu Thr Asn Pro Cys Arg
Asn Gly Gly Thr Cys Asp Leu Leu Thr Leu Thr Glu Tyr Lys Cys Arg
Ala Ser Asn Pro Cys Ala Asn Gly Gly Gln Cys Leu Pro Phe Glu Ala 145 \phantom{\bigg|}150\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}160\phantom{\bigg|}
Ser Tyr Ile Cys His Cys Pro Pro Ser Phe His Gly Pro Thr Cys Arg 165 \hspace{1cm} 170 \hspace{1cm} 175
Gln Asp Val Asn Glu Cys Gly Gln Lys Pro Gly Leu Cys Arg His Gly
Gly Thr Cys His Asn Glu Val Gly Ser Tyr Arg Cys Val Cys Arg Ala 195 \phantom{\bigg|}200\phantom{\bigg|} 200 \phantom{\bigg|}205\phantom{\bigg|}
Thr His Thr Gly Pro Asn Cys Glu Arg Pro Tyr Val Pro Cys Ser Pro 210 \, 215 \, 220 \,
Ser Pro Cys Gln Asn Gly Gly Thr Cys Arg Pro Thr Gly Asp Val Thr
His Glu Cys Ala Cys Leu Pro Gly Phe Thr Gly Gln Asn Cys Glu Glu
Asn Ile Asp Asp Cys Pro Gly Asn Asn Cys Lys Asn Gly Gly Ala Cys
                                    265
Val Asp Gly Val Asn Thr Tyr Asn Cys Arg Cys Pro Pro Glu Trp Thr
Gly Gln Tyr Cys Thr Glu Asp Val Asp Glu Cys Gln Leu Met Pro Asn
```

	290					295					300				
Ala 305	Сув	Gln	Asn	Gly	Gly 310	Thr	Сув	His	Asn	Thr 315	His	Gly	Gly	Tyr	Asn 320
СЛа	Val	Сув	Val	Asn 325	Gly	Trp	Thr	Gly	Glu 330	Asp	СЛа	Ser	Glu	Asn 335	Ile
Asp	Asp	Сув	Ala 340	Ser	Ala	Ala	Сув	Phe 345	His	Gly	Ala	Thr	Сув 350	His	Asp
Arg	Val	Ala 355	Ser	Phe	Tyr	CÀa	Glu 360	СЛа	Pro	His	Gly	Arg 365	Thr	Gly	Leu
Leu	Сув 370	His	Leu	Asn	Asp	Ala 375	CÀa	Ile	Ser	Asn	Pro 380	CÀa	Asn	Glu	Gly
Ser 385	Asn	Cys	Asp	Thr	Asn 390	Pro	Val	Asn	Gly	Lys 395	Ala	Ile	CÀa	Thr	Cys 400
Pro	Ser	Gly	Tyr	Thr 405	Gly	Pro	Ala	Cys	Ser 410	Gln	Asp	Val	Asp	Glu 415	CÀa
Ser	Leu	Gly	Ala 420	Asn	Pro	CÀa	Glu	His 425	Ala	Gly	Lys	СЛа	Ile 430	Asn	Thr
Leu	Gly	Ser 435	Phe	Glu	CÀa	Gln	Cys 440	Leu	Gln	Gly	Tyr	Thr 445	Gly	Pro	Arg
CAa	Glu 450	Ile	Asp	Val	Asn	Glu 455	Cys	Val	Ser	Asn	Pro 460	Сув	Gln	Asn	Asp
Ala 465	Thr	Сув	Leu	Asp	Gln 470	Ile	Gly	Glu	Phe	Gln 475	CAa	Ile	Cys	Met	Pro 480
Gly	Tyr	Glu	Gly	Val 485	His	CAa	Glu	Val	Asn 490	Thr	Asp	Glu	Cys	Ala 495	Ser
Ser	Pro	Сув	Leu 500	His	Asn	Gly	Arg	Cys	Leu	Asp	ГÀа	Ile	Asn 510	Glu	Phe
Gln	Cys	Glu 515	Cys	Pro	Thr	Gly	Phe 520	Thr	Gly	His	Leu	Сув 525	Gln	Tyr	Asp
Val	Asp 530	Glu	Cys	Ala	Ser	Thr 535	Pro	Cys	Lys	Asn	Gly 540	Ala	Lys	Сув	Leu
Asp 545	Gly	Pro	Asn	Thr	Tyr 550	Thr	Cys	Val	Сув	Thr 555	Glu	Gly	Tyr	Thr	Gly 560
Thr	His	Сув	Glu	Val 565	Asp	Ile	Asp	Glu	Сув 570	Asp	Pro	Asp	Pro	Сув 575	His
Tyr	Gly	Ser	Cys 580	Lys	Asp	Gly	Val	Ala 585	Thr	Phe	Thr	Сув	Leu 590	Сув	Arg
Pro	Gly	Tyr 595	Thr	Gly	His	His	Cys	Glu	Thr	Asn	Ile	Asn 605	Glu	Cys	Ser
Ser	Gln 610	Pro	Cys	Arg	His	Gly 615	Gly	Thr	Cys	Gln	Asp 620	Arg	Asp	Asn	Ala
Tyr 625	Leu	Cys	Phe	CÀa	Leu 630	Lys	Gly	Thr	Thr	Gly 635	Pro	Asn	Cys	Glu	Ile 640
Asn	Leu	Asp	Asp	Сув 645	Ala	Ser	Ser	Pro	Сув 650	Asp	Ser	Gly	Thr	Сув 655	Leu
Asp	Lys	Ile	Asp 660	Gly	Tyr	Glu	CÀa	Ala 665	Cys	Glu	Pro	Gly	Tyr 670	Thr	Gly
Ser	Met	Сув 675	Asn	Ile	Asn	Ile	Asp	Glu	Cys	Ala	Gly	Asn 685	Pro	CÀa	His
Asn	Gly 690	Gly	Thr	СЛа	Glu	Asp 695	Gly	Ile	Asn	Gly	Phe 700	Thr	Cys	Arg	CÀa
Pro 705	Glu	Gly	Tyr	His	Asp 710	Pro	Thr	Сув	Leu	Ser 715	Glu	Val	Asn	Glu	Cys 720

Asn	Ser	Asn	Pro	Cys 725	Val	His	Gly	Ala	Cys 730	Arg	Asp	Ser	Leu	Asn 735	Gly
Tyr	Lys	Сув	Asp 740	Сув	Asp	Pro	Gly	Trp 745	Ser	Gly	Thr	Asn	Сув 750	Asp	Ile
Asn	Asn	Asn 755	Glu	Cys	Glu	Ser	Asn 760	Pro	Cys	Val	Asn	Gly 765	Gly	Thr	Сув
Lys	Asp 770	Met	Thr	Ser	Gly	Tyr 775	Val	CAa	Thr	Cys	Arg 780	Glu	Gly	Phe	Ser
Gly 785	Pro	Asn	Сув	Gln	Thr 790	Asn	Ile	Asn	Glu	Сув 795	Ala	Ser	Asn	Pro	goo Cys
Leu	Asn	Gln	Gly	Thr 805	Cys	Ile	Asp	Asp	Val 810	Ala	Gly	Tyr	Lys	Cys 815	Asn
Cys	Leu	Leu	Pro 820	Tyr	Thr	Gly	Ala	Thr 825	Cys	Glu	Val	Val	Leu 830	Ala	Pro
Cys	Ala	Pro 835	Ser	Pro	Cys	Arg	Asn 840	Gly	Gly	Glu	Cys	Arg 845	Gln	Ser	Glu
Asp	Tyr 850	Glu	Ser	Phe	Ser	Cys 855	Val	Cys	Pro	Thr	Gly 860	Trp	Gln	Gly	Gln
Thr 865	Cys	Glu	Val	Asp	Ile 870	Asn	Glu	Cys	Val	Leu 875	Ser	Pro	Cya	Arg	His 880
Gly	Ala	Ser	Cys	Gln 885	Asn	Thr	His	Gly	Gly 890	Tyr	Arg	CÀa	His	Cys 895	Gln
Ala	Gly	Tyr	Ser 900	Gly	Arg	Asn	Cys	Glu 905	Thr	Asp	Ile	Asp	Asp 910	Cys	Arg
Pro	Asn	Pro 915	Сув	His	Asn	Gly	Gly 920	Ser	Cys	Thr	Asp	Gly 925	Ile	Asn	Thr
Ala	Phe 930	Сув	Asp	Cys	Leu	Pro 935	Gly	Phe	Arg	Gly	Thr 940	Phe	Cys	Glu	Glu
Asp 945	Ile	Asn	Glu	СЛа	Ala 950	Ser	Asp	Pro	Cys	Arg 955	Asn	Gly	Ala	Asn	Cys 960
Thr	Asp	Сув	Val	Asp 965	Ser	Tyr	Thr	Cys	Thr 970	Cys	Pro	Ala	Gly	Phe 975	Ser
Gly	Ile	His	980	Glu	Asn	Asn	Thr	Pro 985	Asp	Cys	Thr	Glu	Ser 990	Ser	Cys
Phe	Asn	Gly 995	Gly	Thr	Cys	Val	Asp		/ Il	e Ası	n Se:	r Ph		nr Cy	ys Leu
CÀa	Pro 1010		Gly	/ Phe	e Thr	Gly		er Ty	yr C	ys G		is . 020	Asp V	/al /	Asn
Glu	Cys 1025	-	Sei	r Glr	n Pro	Су: 103		eu H:	is G	ly G	-	nr 035	Cys (Gln A	Aap
Gly	Cys 1040		/ Sei	r Tyı	Arg	у Су: 104		nr Cy	ys P	ro G		ly 050	Tyr :	Thr (Gly
Pro	Asn 1055	_	Glr	n Asr	ı Lev	106		is T	rp C	ys Ai	sp Se	er 065	Ser I	Pro (Cys
Lys	Asn 1070	_	/ Gly	y Lys	з Сув	Tr		ln Ti	nr H	is Tl		ln 080	Tyr A	Arg (Cys
Glu	Cys		Sei	r Gl	7 Trp	Th:		ly Le	eu T	yr C	ys A:	sp '	Val I	Pro :	Ser
Val	Ser 1100		s Glu	ı Val	l Ala	110		ln Ai	rg G	ln G		al . 110	Asp V	/al /	Ala
Arg	Leu 1115		s Glr	n His	g Gly	7 Gly		eu Cy	ys V	al A:		la (Gly A	Asn '	Thr

His	His 1130	CAa	Arg	Cya	Gln	Ala 1135	Gly	Tyr	Thr	Gly	Ser 1140	Tyr	СЛв	Glu
Asp	Leu 1145	Val	Asp	Glu	Cys	Ser 1150	Pro	Ser	Pro	CAa	Gln 1155	Asn	Gly	Ala
Thr	Сув 1160	Thr	Asp	Tyr	Leu	Gly 1165	Gly	Tyr	Ser	Сув	Lys 1170	Сув	Val	Ala
Gly	Tyr 1175	His	Gly	Val	Asn	Cys 1180	Ser	Glu	Glu	Ile	Asp 1185	Glu	Сув	Leu
Ser	His 1190	Pro	CÀa	Gln	Asn	Gly 1195	Gly	Thr	Сув	Leu	Asp 1200	Leu	Pro	Asn
Thr	Tyr 1205	Lys	CAa	Ser	Сла	Pro 1210	Arg	Gly	Thr	Gln	Gly 1215	Val	His	СЛа
Glu	Ile 1220	Asn	Val	Asp	Asp	Сув 1225	Asn	Pro	Pro	Val	Asp 1230	Pro	Val	Ser
Arg	Ser 1235	Pro	Lys	Cys	Phe	Asn 1240	Asn	Gly	Thr	Cys	Val 1245	Asp	Gln	Val
Gly	Gly 1250	Tyr	Ser	Cys	Thr	Сув 1255	Pro	Pro	Gly	Phe	Val 1260	Gly	Glu	Arg
CAa	Glu 1265	Gly	Asp	Val	Asn	Glu 1270	Cha	Leu	Ser	Asn	Pro 1275	Cys	Asp	Ala
Arg	Gly 1280	Thr	Gln	Asn	Сув	Val 1285	Gln	Arg	Val	Asn	Asp 1290	Phe	His	CÀa
Glu	Сув 1295	Arg	Ala	Gly	His	Thr 1300	Gly	Arg	Arg	Cys	Glu 1305	Ser	Val	Ile
Asn	Gly 1310	Cya	Lys	Gly	Lys	Pro 1315	Cys	Lys	Asn	Gly	Gly 1320	Thr	Cys	Ala
Val	Ala 1325	Ser	Asn	Thr	Ala	Arg 1330	Gly	Phe	Ile	CAa	Lys 1335	CAa	Pro	Ala
Gly	Phe 1340	Glu	Gly	Ala	Thr	Cys 1345	Glu	Asn	Asp	Ala	Arg 1350	Thr	CAa	Gly
Ser	Leu 1355	Arg	CAa	Leu	Asn	Gly 1360	Gly	Thr	CÀa	Ile	Ser 1365	Gly	Pro	Arg
Ser	Pro 1370	Thr	СЛа	Leu	СЛа	Leu 1375	Gly	Pro	Phe	Thr	Gly 1380	Pro	Glu	CAa
Gln	Phe 1385	Pro	Ala	Ser	Ser	Pro 1390	CÀa	Leu	Gly	Gly	Asn 1395	Pro	CÀa	Tyr
Asn	Gln 1400	Gly	Thr	Cys	Glu	Pro 1405	Thr	Ser	Glu	Ser	Pro 1410	Phe	Tyr	Arg
CAa	Leu 1415	СЛа	Pro	Ala	Lys	Phe 1420	Asn	Gly	Leu	Leu	Cys 1425	His	Ile	Leu
Asp	Tyr 1430	Ser	Phe	Gly	Gly	Gly 1435	Ala	Gly	Arg	Asp	Ile 1440	Pro	Pro	Pro
Leu	Ile 1445	Glu	Glu	Ala	Cha	Glu 1450	Leu	Pro	Glu	CÀa	Gln 1455	Glu	Asp	Ala
Gly	Asn 1460	Lys	Val	Сув	Ser	Leu 1465	Gln	Сув	Asn	Asn	His 1470	Ala	Сув	Gly
Trp	Asp 1475	Gly	Gly	Asp	CÀa	Ser 1480	Leu	Asn	Phe	Asn	Asp 1485	Pro	Trp	ГАз
Asn	Cys 1490	Thr	Gln	Ser	Leu	Gln 1495	Cha	Trp	Lys	Tyr	Phe 1500	Ser	Asp	Gly
His	Cys 1505	Asp	Ser	Gln	Cys	Asn 1510	Ser	Ala	Gly	CÀa	Leu 1515	Phe	Asp	Gly
Phe	Asp	Cys	Gln	Arg	Ala	Glu	Gly	Gln	Cys	Asn	Pro	Leu	Tyr	Asp

-continue	ŀ
-continue	1

	1520					1525					1530			
Gln	Tyr 1535	Сув	Lys	Asp	His	Phe 1540	Ser	Asp	Gly	His	Cys 1545	Asp	Gln	Gly
CÀa	Asn 1550	Ser	Ala	Glu	Сув	Glu 1555	Trp	Asp	Gly	Leu	Asp 1560	СЛа	Ala	Glu
His	Val 1565	Pro	Glu	Arg	Leu	Ala 1570	Ala	Gly	Thr	Leu	Val 1575	Val	Val	Val
Leu	Met 1580	Pro	Pro	Glu	Gln	Leu 1585	Arg	Asn	Ser	Ser	Phe 1590	His	Phe	Leu
Arg	Glu 1595	Leu	Ser	Arg	Val	Leu 1600	His	Thr	Asn	Val	Val 1605	Phe	Lys	Arg
Asp	Ala 1610	His	Gly	Gln	Gln	Met 1615	Ile	Phe	Pro	Tyr	Tyr 1620	Gly	Arg	Glu
Glu	Glu 1625	Leu	Arg	Lys	His	Pro 1630	Ile	Lys	Arg	Ala	Ala 1635	Glu	Gly	Trp
Ala	Ala 1640	Pro	Asp	Ala	Leu	Leu 1645	Gly	Gln	Val	Lys	Ala 1650	Ser	Leu	Leu
Pro	Gly 1655	Gly	Ser	Glu	Gly	Gly 1660	Arg	Arg	Arg	Arg	Glu 1665	Leu	Asp	Pro
Met	Asp 1670	Val	Arg	Gly	Ser	Ile 1675	Val	Tyr	Leu	Glu	Ile 1680	Asp	Asn	Arg
Gln	Cys 1685	Val	Gln	Ala	Ser	Ser 1690	Gln	Cys	Phe	Gln	Ser 1695	Ala	Thr	Asp
Val	Ala 1700	Ala	Phe	Leu	Gly	Ala 1705	Leu	Ala	Ser	Leu	Gly 1710	Ser	Leu	Asn
Ile	Pro 1715	Tyr	Lys	Ile	Glu	Ala 1720	Val	Gln	Ser	Glu	Thr 1725	Val	Glu	Pro
Pro	Pro 1730	Pro	Ala	Gln	Leu	His 1735	Phe	Met	Tyr	Val	Ala 1740	Ala	Ala	Ala
Phe	Val 1745	Leu	Leu	Phe	Phe	Val 1750	Gly	Сув	Gly	Val	Leu 1755	Leu	Ser	Arg
Lys	Arg 1760	Arg	Arg	Gln	His	Gly 1765	Gln	Leu	Trp	Phe	Pro 1770	Glu	Gly	Phe
Lys	Val 1775	Ser	Glu	Ala	Ser	Lys 1780	Lys	Lys	Arg	Arg	Glu 1785	Pro	Leu	Gly
Glu	Asp 1790	Ser	Val	Gly	Leu	Lys 1795	Pro	Leu	Lys	Asn	Ala 1800	Ser	Asp	Gly
Ala	Leu 1805	Met	Asp	Aap	Asn	Gln 1810	Asn	Glu	Trp	Gly	Asp 1815	Glu	Asp	Leu
Glu	Thr 1820	Lys	Lys	Phe	Arg	Phe 1825	Glu	Glu	Pro	Val	Val 1830	Leu	Pro	Asp
Leu	Asp 1835	Asp	Gln	Thr	Asp	His 1840	Arg	Gln	Trp	Thr	Gln 1845	Gln	His	Leu
Asp	Ala 1850	Ala	Asp	Leu	Arg	Met 1855	Ser	Ala	Met	Ala	Pro 1860	Thr	Pro	Pro
Gln	Gly 1865	Glu	Val	Asp	Ala	Asp 1870	Cys	Met	Asp	Val	Asn 1875	Val	Arg	Gly
Pro	Asp 1880	Gly	Phe	Thr	Pro	Leu 1885	Met	Ile	Ala	Ser	Cys 1890	Ser	Gly	Gly
Gly	Leu 1895	Glu	Thr	Gly	Asn	Ser 1900	Glu	Glu	Glu	Glu	Asp 1905	Ala	Pro	Ala
Val	Ile 1910	Ser	Asp	Phe	Ile	Tyr 1915	Gln	Gly	Ala	Ser	Leu 1920	His	Asn	Gln

Thr	Asp 1925	Arg	Thr	Gly	Glu	Thr 1930	Ala	Leu	His	Leu	Ala 1935	Ala	Arg	Tyr
Ser	Arg 1940	Ser	Asp	Ala	Ala	Lys 1945	Arg	Leu	Leu	Glu	Ala 1950	Ser	Ala	Aap
Ala	Asn 1955	Ile	Gln	Asp	Asn	Met 1960	Gly	Arg	Thr	Pro	Leu 1965	His	Ala	Ala
Val	Ser 1970	Ala	Asp	Ala	Gln	Gly 1975	Val	Phe	Gln	Ile	Leu 1980	Ile	Arg	Asn
Arg	Ala 1985	Thr	Asp	Leu	Asp	Ala 1990	Arg	Met	His	Asp	Gly 1995	Thr	Thr	Pro
Leu	Ile 2000	Leu	Ala	Ala	Arg	Leu 2005	Ala	Val	Glu	Gly	Met 2010	Leu	Glu	Asp
Leu	Ile 2015	Asn	Ser	His	Ala	Asp 2020	Val	Asn	Ala	Val	Asp 2025	Asp	Leu	Gly
ГÀа	Ser 2030	Ala	Leu	His	Trp	Ala 2035	Ala	Ala	Val	Asn	Asn 2040	Val	Asp	Ala
Ala	Val 2045	Val	Leu	Leu	Lys	Asn 2050	Gly	Ala	Asn	Lys	Asp 2055	Met	Gln	Asn
Asn	Arg 2060	Glu	Glu	Thr	Pro	Leu 2065	Phe	Leu	Ala	Ala	Arg 2070	Glu	Gly	Ser
Tyr	Glu 2075	Thr	Ala	Lys	Val	Leu 2080	Leu	Asp	His	Phe	Ala 2085	Asn	Arg	Asp
Ile	Thr 2090	Asp	His	Met	Asp	Arg 2095	Leu	Pro	Arg	Asp	Ile 2100	Ala	Gln	Glu
Arg	Met 2105	His	His	Asp	Ile	Val 2110	Arg	Leu	Leu	Asp	Glu 2115	Tyr	Asn	Leu
Val	Arg 2120	Ser	Pro	Gln	Leu	His 2125	Gly	Ala	Pro	Leu	Gly 2130	Gly	Thr	Pro
Thr	Leu 2135	Ser	Pro	Pro	Leu	Cys 2140	Ser	Pro	Asn	Gly	Tyr 2145	Leu	Gly	Ser
Leu	Lys 2150	Pro	Gly	Val	Gln	Gly 2155	Lys	Lys	Val	Arg	Lys 2160	Pro	Ser	Ser
Lys	Gly 2165	Leu	Ala	Cys	Gly	Ser 2170	Lys	Glu	Ala	Lys	Asp 2175	Leu	Lys	Ala
Arg	Arg 2180	Lys	Lys	Ser	Gln	Asp 2185	Gly	Lys	Gly	Cys	Leu 2190	Leu	Asp	Ser
Ser	Gly 2195	Met	Leu	Ser	Pro	Val 2200	Asp	Ser	Leu	Glu	Ser 2205	Pro	His	Gly
Tyr	Leu 2210	Ser	Asp	Val	Ala	Ser 2215	Pro	Pro	Leu	Leu	Pro 2220	Ser	Pro	Phe
Gln	Gln 2225	Ser	Pro	Ser	Val	Pro 2230	Leu	Asn	His	Leu	Pro 2235	Gly	Met	Pro
Asp	Thr 2240	His	Leu	Gly	Ile	Gly 2245	His	Leu	Asn	Val	Ala 2250	Ala	Lys	Pro
Glu	Met 2255	Ala	Ala	Leu	Gly	Gly 2260	Gly	Gly	Arg	Leu	Ala 2265	Phe	Glu	Thr
Gly	Pro 2270	Pro	Arg	Leu	Ser	His 2275	Leu	Pro	Val	Ala	Ser 2280	Gly	Thr	Ser
Thr	Val 2285	Leu	Gly	Ser	Ser	Ser 2290	Gly	Gly	Ala	Leu	Asn 2295	Phe	Thr	Val
Gly	Gly 2300	Ser	Thr	Ser	Leu	Asn 2305	Gly	Gln	СЛа	Glu	Trp 2310	Leu	Ser	Arg

Leu Gln Se 2315	r Gly Met	Val	Pro 2320	Asn	Gln	Tyr	Asn	Pro 2325	Leu	Arg	Gly
Ser Val Al 2330	a Pro Gly	Pro	Leu 2335	Ser	Thr	Gln	Ala	Pro 2340	Ser	Leu	Gln
His Gly Me 2345	t Val Gly	Pro	Leu 2350	His	Ser	Ser	Leu	Ala 2355	Ala	Ser	Ala
Leu Ser Gl 2360	n Met Met	Ser	Tyr 2365	Gln	Gly	Leu	Pro	Ser 2370	Thr	Arg	Leu
Ala Thr Gl 2375	n Pro His	Leu	Val 2380	Gln	Thr	Gln	Gln	Val 2385	Gln	Pro	Gln
Asn Leu Gl 2390	n Met Gln	Gln	Gln 2395	Asn	Leu	Gln	Pro	Ala 2400	Asn	Ile	Gln
Gln Gln Gl 2405	n Ser Leu	Gln	Pro 2410	Pro	Pro	Pro	Pro	Pro 2415	Gln	Pro	His
Leu Gly Va 2420	l Ser Ser	Ala	Ala 2425	Ser	Gly	His	Leu	Gly 2430	Arg	Ser	Phe
Leu Ser Gl 2435	y Glu Pro	Ser	Gln 2440	Ala	Asp	Val	Gln	Pro 2445	Leu	Gly	Pro
Ser Ser Le 2450	u Ala Val	His	Thr 2455	Ile	Leu	Pro	Gln	Glu 2460	Ser	Pro	Ala
Leu Pro Th	r Ser Leu	Pro	Ser 2470	Ser	Leu	Val	Pro	Pro 2475	Val	Thr	Ala
Ala Gln Ph 2480	e Leu Thr	Pro	Pro 2485	Ser	Gln	His	Ser	Tyr 2490	Ser	Ser	Pro
Val Asp As 2495	n Thr Pro	Ser	His 2500	Gln	Leu	Gln	Val	Pro 2505	Glu	His	Pro
Phe Leu Th	r Pro Ser	Pro	Glu 2515	Ser	Pro	Asp	Gln	Trp 2520	Ser	Ser	Ser
Ser Pro Hi 2525	s Ser Asn	Val	Ser 2530	Asp	Trp	Ser	Glu	Gly 2535	Val	Ser	Ser
Pro Pro Th	r Ser Met	Gln	Ser 2545	Gln	Ile	Ala	Arg	Ile 2550	Pro	Glu	Ala
Phe Lys 2555											
<210> SEQ I <211> LENGT <212> TYPE:	H: 2531 PRT	m., a a,	.1								
<213> ORGAN		musci	urus								
<400> SEQUE	NCE: 2										
Met Pro Arg 1	Leu Leu 5	Thr I	Pro Le	eu Le	eu Cy 10		∋u Tł	ır Leu	ı Leı	1 Pro	> Ala
Leu Ala Ala	Arg Gly 20	Leu A	Arg Cy	ys S€ 25		ln Pi	ro Se	er Gly	7 Th: 30	r Cys	; Leu
Asn Gly Gly 35	Arg Cys	Glu V	Val Al		en G	Ly Th	nr Gl	lu Ala 45	а Суя	s Val	l Cys
Ser Gly Ala 50	Phe Val	_	Gln Ai 55	rg Cy	va G	ln As	sp Se		n Pro	Cy:	3 Leu
Ser Thr Pro	Cys Lys	Asn A	Ala G	ly Th	nr Cy	/s Hi 75		al Val	. Asl	P His	80 81y
Gly Thr Val	Asp Tyr 85	Ala (Cys Se	er Cy	/s Pi 90		eu Gl	ly Phe	e Sei	r Gly 95	/ Pro
Leu Cys Leu	Thr Pro	Leu A	Asp As		la Cy 05	/s Le	eu Al	la Asr	110	_	3 Arg

Asn	Gly	Gly 115	Thr	СЛа	Asp	Leu	Leu 120	Thr	Leu	Thr	Glu	Tyr 125	ГЛа	Сла	Arg
СЛа	Pro 130	Pro	Gly	Trp	Ser	Gly 135	Lys	Ser	Сув	Gln	Gln 140	Ala	Asp	Pro	Cys
Ala 145	Ser	Asn	Pro	CAa	Ala 150	Asn	Gly	Gly	Gln	Сув 155	Leu	Pro	Phe	Glu	Ser 160
Ser	Tyr	Ile	Cys	Arg 165	CAa	Pro	Pro	Gly	Phe 170	His	Gly	Pro	Thr	Cys 175	Arg
Gln	Asp	Val	Asn 180	Glu	Cys	Ser	Gln	Asn 185	Pro	Gly	Leu	Сув	Arg 190	His	Gly
Gly	Thr	Сув 195	His	Asn	Glu	Ile	Gly 200	Ser	Tyr	Arg	Cys	Ala 205	Cys	Arg	Ala
Thr	His 210	Thr	Gly	Pro	His	Cys 215	Glu	Leu	Pro	Tyr	Val 220	Pro	Cys	Ser	Pro
Ser 225	Pro	Cys	Gln	Asn	Gly 230	Gly	Thr	Cys	Arg	Pro 235	Thr	Gly	Asp	Thr	Thr 240
His	Glu	Cys	Ala	Cys 245	Leu	Pro	Gly	Phe	Ala 250	Gly	Gln	Asn	Cys	Glu 255	Glu
Asn	Val	Asp	Asp 260	Cys	Pro	Gly	Asn	Asn 265	Cys	Lys	Asn	Gly	Gly 270	Ala	CAa
Val	Asp	Gly 275	Val	Asn	Thr	Tyr	Asn 280	Cys	Arg	Cys	Pro	Pro 285	Glu	Trp	Thr
Gly	Gln 290	Tyr	Cys	Thr	Glu	Asp 295	Val	Asp	Glu	Cys	Gln 300	Leu	Met	Pro	Asn
Ala 305	Сув	Gln	Asn	Gly	Gly 310	Thr	Cys	His	Asn	Thr 315	His	Gly	Gly	Tyr	Asn 320
Сув	Val	Сув	Val	Asn 325	Gly	Trp	Thr	Gly	Glu 330	Asp	Сла	Ser	Glu	Asn 335	Ile
Asp	Asp	Cys	Ala 340	Ser	Ala	Ala	СЛа	Phe 345	Gln	Gly	Ala	Thr	Сув 350	His	Asp
Arg	Val	Ala 355	Ser	Phe	Tyr	CÀa	Glu 360	CÀa	Pro	His	Gly	Arg 365	Thr	Gly	Leu
Leu	Сув 370	His	Leu	Asn	Asp	Ala 375	Cha	Ile	Ser	Asn	Pro 380	CAa	Asn	Glu	Gly
Ser 385	Asn	Cys	Asp	Thr	Asn 390	Pro	Val	Asn	Gly	Lys 395	Ala	Ile	Cha	Thr	Cys 400
Pro	Ser	Gly	Tyr	Thr 405	Gly	Pro	Ala	Сла	Ser 410	Gln	Asp	Val	Asp	Glu 415	CAa
Ala	Leu	Gly	Ala 420	Asn	Pro	CÀa	Glu	His 425	Ala	Gly	ГÀа	CAa	Leu 430	Asn	Thr
Leu	Gly	Ser 435	Phe	Glu	CÀa	Gln	Cys 440	Leu	Gln	Gly	Tyr	Thr 445	Gly	Pro	Arg
Cys	Glu 450	Ile	Asp	Val	Asn	Glu 455	Cys	Ile	Ser	Asn	Pro 460	CAa	Gln	Asn	Asp
Ala 465	Thr	Cys	Leu	Asp	Gln 470	Ile	Gly	Glu	Phe	Gln 475	Cys	Ile	Cys	Met	Pro 480
Gly	Tyr	Glu	Gly	Val 485	Tyr	Cys	Glu	Ile	Asn 490	Thr	Asp	Glu	Сув	Ala 495	Ser
Ser	Pro	Сла	Leu 500	His	Asn	Gly	His	Сув 505	Met	Asp	Lys	Ile	Asn 510	Glu	Phe
Gln	Cys	Gln 515	Сув	Pro	Lys	Gly	Phe 520	Asn	Gly	His	Leu	Сув 525	Gln	Tyr	Asp

Val	Asp 530	Glu	Cha	Ala	Ser	Thr 535	Pro	Cha	ГÀв	Asn	Gly 540	Ala	Lys	Cha	Leu
Asp 545	Gly	Pro	Asn	Thr	Tyr 550	Thr	Cha	Val	CAa	Thr 555	Glu	Gly	Tyr	Thr	Gly 560
Thr	His	Сув	Glu	Val 565	Asp	Ile	Asp	Glu	Cys 570	Asp	Pro	Asp	Pro	Сув 575	His
Tyr	Gly	Ser	Cys 580	Lys	Asp	Gly	Val	Ala 585	Thr	Phe	Thr	CAa	Leu 590	Cys	Gln
Pro	Gly	Tyr 595	Thr	Gly	His	His	600 Cys	Glu	Thr	Asn	Ile	Asn 605	Glu	Cys	His
Ser	Gln 610	Pro	Cys	Arg	His	Gly 615	Gly	Thr	Cys	Gln	Asp 620	Arg	Asp	Asn	Ser
Tyr 625	Leu	Cys	Leu	Cys	Leu 630	Lys	Gly	Thr	Thr	Gly 635	Pro	Asn	Cys	Glu	Ile 640
Asn	Leu	Asp	Asp	Cys 645	Ala	Ser	Asn	Pro	Сув 650	Asp	Ser	Gly	Thr	Сув 655	Leu
Asp	Lys	Ile	Asp	Gly	Tyr	Glu	Cys	Ala 665	Cys	Glu	Pro	Gly	Tyr 670	Thr	Gly
Ser	Met	Сув 675	Asn	Val	Asn	Ile	Asp	Glu	Cys	Ala	Gly	Ser 685	Pro	Cys	His
Asn	Gly 690	Gly	Thr	CÀa	Glu	Asp 695	Gly	Ile	Ala	Gly	Phe 700	Thr	Cya	Arg	Cys
Pro 705	Glu	Gly	Tyr	His	Asp 710	Pro	Thr	Cha	Leu	Ser 715	Glu	Val	Asn	Glu	Сув 720
Asn	Ser	Asn	Pro	Сув 725	Ile	His	Gly	Ala	Сув 730	Arg	Asp	Gly	Leu	Asn 735	Gly
Tyr	Lys	Cys	Asp 740	CAa	Ala	Pro	Gly	Trp 745	Ser	Gly	Thr	Asn	Сув 750	Asp	Ile
Asn	Asn	Asn 755	Glu	CÀa	Glu	Ser	Asn 760	Pro	CAa	Val	Asn	Gly 765	Gly	Thr	Сув
ГÀв	Asp 770	Met	Thr	Ser	Gly	Tyr 775	Val	Cys	Thr	Сув	Arg 780	Glu	Gly	Phe	Ser
Gly 785	Pro	Asn	Càa	Gln	Thr 790	Asn	Ile	Asn	Glu	Сув 795	Ala	Ser	Asn	Pro	800 CÀa
Leu	Asn	Gln	Gly	Thr 805	CAa	Ile	Asp	Asp	Val 810	Ala	Gly	Tyr	Lys	Cys 815	Asn
CÀa	Pro	Leu	Pro 820	Tyr	Thr	Gly	Ala	Thr 825	Cys	Glu	Val	Val	Leu 830	Ala	Pro
Cys	Ala	Thr 835	Ser	Pro	Cys	Lys	Asn 840	Ser	Gly	Val	Сув	Lys 845	Glu	Ser	Glu
Asp	Tyr 850	Glu	Ser	Phe	Ser	822 CAa	Val	Cys	Pro	Thr	Gly 860	Trp	Gln	Gly	Gln
Thr 865	Cys	Glu	Val	Asp	Ile 870	Asn	Glu	Cys	Val	Lys 875	Ser	Pro	Cys	Arg	His 880
Gly	Ala	Ser	CÀa	Gln 885	Asn	Thr	Asn	Gly	Ser 890	Tyr	Arg	CAa	Leu	695 895	Gln
Ala	Gly	Tyr	Thr 900	Gly	Arg	Asn	CÀa	Glu 905	Ser	Asp	Ile	Asp	Asp 910	CÀa	Arg
Pro	Asn	Pro 915	СЛа	His	Asn	Gly	Gly 920	Ser	Сув	Thr	Asp	Gly 925	Ile	Asn	Thr
Ala	Phe 930	Cys	Asp	CÀa	Leu	Pro 935	Gly	Phe	Gln	Gly	Ala 940	Phe	Cys	Glu	Glu
Asp	Ile	Asn	Glu	Cys	Ala	Ser	Asn	Pro	Cys	Gln	Asn	Gly	Ala	Asn	Cys

### Rasp Cys Val Asp Ser Tyr Thr Cys Thr Cys Pro Val Gly Phe Asn 975 Gly Ile His Cys Glu Asn Asn Thr Pro Asp Cys Thr Glu Ser Ser Cys 980 Phe Asn Gly Gly Thr Cys Val Asp Gly Ile Asn Ser Phe Thr Cys Leu 1010 Glu Cys Asp Ser Arg Pro Cys 1045 Gly Gly Thr Tyr Lys Cys Thr Cys Pro Gly Thr Glu 1020 Glu Cys Asp Ser Arg Pro Cys 1045 Fin Cys Gly Asn Leu Val Asp 1045 Eeu Asn Gly Gly Asn Leu Val 2040 Leu Asn Gly Gly Arg Cys Thr Glu 1050 Glu Cys Arg Ser Gly Trp Thr 1060 Glu Cys Arg Ser Gly Trp Thr 1070 Glu Cys Arg Glu Val Ala Ala Gln Lys Arg Gly Ile Asp Val Thr 1100 Fro Asn Pro Cys Glu Asp Lys 1120 Thr Thr Asp Tyr Leu Gly Gly Trp Thr Gly Ser 1155 Thr Cys Thr Asp Tyr Leu Gly Gly Phe Ser Cys Lys Cys Val Ala 1135 Gly Tyr His Gly Ser Asn Cys Gly Thr Gly 1120 Gly Try Thr Gly Ser Asn Cys Ile Asp Glu Cys Leu 1180 Ser Glu Pro Cys Gln Asn Gly Try Thr Cys Ile Asp Lys 1180 Fro Cys Thr Asp Tyr Leu Gly Gly Thr Cys Ile Asp Lu Cys Leu 1180 Gly Tyr His Gly Ser Asn Cys Rer Gly Gly Thr Cys Ile Asp Lu Cys Leu 1180 Fro Cys Thr Asp Tyr Leu Gly Gly Thr Cys Ile Asp Lu Cys Leu 1180 Gly Tyr Thr Cys Thr Cys Thr Cys Pro Cys Lys Cys Pro Ala Ser 1225 Glu Tle Asn Val Asp Asp Cys Phe Asn 1180 Gly Tyr Thr Cys Thr Cys Thr Cys Pro Cys Lys Cys Asp Pro 1225 Glu Gly Asp Val Asn Cys Val Asp Cys Pro Pro Gly Phe Val Gly Glu Arg 1225 Ang Gly Tyr Thr Cys Thr Cys Thr Cys Leu Ser Asn Thr Ash Cys Val Asp Asp Cys Lys Asp Cys Leu Ser Asn Thr Ash Cys Val Asp Asp Cys Lys Asp Cys Lys Asp Cys Rep Pro 1225 Ang Gly Thr Gln Asn Cys Val Gly Asp Val Asn Gly Hrs Gly Gly Ser Val Ile 1235 Ang Gly Thr Gln Asn Cys Val Gly As	945 950	955 960
Phe Asn Gly Gly Thr Cys Val Asp Gly Ile Asn Ser Phe Thr Cys Leu 1005 1005		
Cys Pro Bro Gly Phe Thr Gly Phe Thr Cys For Gly Phe Thr Cys For Cys Gly Phe Thr Cys Leu His Gly Gly Thr Cys Gln Asp Val Asp Ser Tyr Gly Thr Tyr Lys Gly Thr Tyr Gly Tyr Thr Gly Thr Thr Gly Thr Thr<		
Solid Soli		
1025 1030 1035 1035 1036 1035 1036 1036 1037 1036 1037 1036 1037 1036 1037 1036 1037 1036 1037 1037 1038		
Leu Aen Cys Gln Asn Leu Val Arg Trp Cys Asp Ser Ala Pro Cys 1065 Lys Asn Gly Gly Arg Cys Trp Gln Thr Asn Thr Gln Gln Tyr His Cys 1085 Glu Cys Arg Ser Gly Trp Thr Gly Val Asn Cys Asp 1095 Val Leu Ser 1096 Val Ser Cys Glu Val Ala Ala Ala Gly Lys Arg Gly He Asp Val Thr 1100 Leu Leu Cys Gln His Gly Gly Leu Cys Val Asp Glu Gly Asp Lys 11125 His Tyr Cys His Cys Gln Ala Gly Tyr Thr Gly Ser 1125 Asp Glu Val Asp Glu Cys Ser Pro Asn Pro Cys Gln Asn Gly Ala 1135 Thr Cys Trr Asp Tyr Leu Gly 1126 Gly Tyr His Gly Ser Asn Cys 1120 Gly Tyr His Gly Ser Asn Cys 1120 Ser Gln Pro Cys Gln Asn Gly 1125 Ser Gln Pro Cys Gln Asn Gly 1125 Asp Glu Ile Asn Val Asp Asp Cys 1120 Glu Ile Asn Val Asp Asp Cys 1120 Glu Ile Asn Val Asp Asp Cys Pro Arg Gly Thr Gln Gly 1215 Glu Ile Asn Val Asp Asp Cys Pro Arg Gly Thr Gln Gly 1215 Gly Tyr Thr Cys Thr Cys Pro Pro Leu Asp Pro Ala Ser 1225 Arg Ser Pro Lys Cys Phe Asn Asn Gly Thr Cys Val Asp Glu Cys Asp Pro 1225 Cys Glu Gly Asp Val Asn Glu Cys Leu Ser Asn Pro Cys Asp Pro 1225 Cys Glu Gly Asp Val Asn Glu Cys Leu Ser Asn Pro Cys Asp Pro 1226 Arg Gly Tyr Thr Cys Thr Cys Thr Cys Leu Ser Asn Pro Cys Asp Pro 1226 Cys Glu Gly Asp Val Asn Glu Cys Leu Ser Asn Pro Cys Asp Pro 1226 Arg Gly Thr Gln Asn Cys Val Asn Glu Cys Leu Ser Asn Pro Cys Asp Pro 1226 Arg Gly Thr Gln Asn Cys Val Asn Glu Cys Leu Ser Asn Pro Cys Asp Pro 1226 Arg Gly Thr Gln Asn Cys Val Asn Glu Arg Arg Cys Glu Ser Val Ile 1220 Asn Gly Cys Arg Ala Gly His Thr Gly Arg Arg Cys Glu Ser Val Ile 1300 Asn Gly Cys Arg Gly Lys Pro Cys Lys Asn Gly Gly Cys Pro Ala 1330 Gly Phe Glu Gly Ala Thr Cys Gly Asn Asp Ala Arg Thr Cys Gly		
Lys Asn Gly Gly Arg Cys Trp 1075 Gln Thr Asn Thr Gln Tyr His Cys 1075 Clu Cys Arg Ser Gly Trp Thr 1090 Clu Cys Arg Ser Gly Trp Thr 1090 Clu Cys Arg Ser Gly Trp Thr 1090 Clu Cys Arg Ser Gly Val Ala Ala Ala Gln Lys Arg Gly Ile Asp Val Thr 1110 Cleu Leu Cys Gln His Gly Gly Leu Cys Val Asp Glu Gly Asp Lys 1115 Clu Cys His Cys Gln Ala Gly Tyr Thr Gly Ser Tyr Cys Glu 1135 Clu Cys Ser Pro Asn Pro Cys Gln Asn Gly Ala 1145 Clu Cys Val Asp Glu Ile Asn Gly Ala 1150 Clu Cys Ser Pro Asn Pro Cys Gln Asn Gly Ala 1170 Clu Cys Val Asp Glu Cys Ser Pro Asn Pro Cys Gln Asn Gly Ala 1175 Clu Cys Val Asp Tyr Leu Gly Gly Phe Ser Cys Lys Cys Val Ala 1175 Clu Cys Val Asp Tyr Leu Gly Gly Phe Ser Cys Lys Cys Val Ala 1175 Clu Cys Cys Asn Cys Ileo Clu Cys Val Asp Ileo Clu Cys Leu Ileo Cys Ileo Cys Cys Cys Pro Arg Gly Thr Cys Ile Asp Leu Thr Asn 1185 Clu Cys Leu Ileo Cys Ileo Clu Cys Cys Cys Pro Arg Gly Thr Gln Gly Val His Cys Ileo Cys Ileo Cys Cys Pro Arg Gly Thr Cys Ile Asp Pro Ala Ser Ileo Cys Ileo Cys Cys Pro Arg Gly Thr Cys Ile Asp Pro Ala Ser Ileo Cys Ileo Cys Cys Pro Arg Gly Thr Cys Val Asp Gln Val Ileo Cys		
1070 1075 1080 1080 1080 1081 1081 1085		
Val Ser Cys Glu Val Ala Ala Ala Gly Leu Cys Val Asp Gly Ile Asp Val Thr 1100 Leu Leu Cys Gln His Gly Gly Leu Cys Val Asp Gly Gly Asp Lys 1125 His Tyr Cys His Cys Gln Ala Gly Tyr Thr Gly Ser Tyr Cys Glu 1135 Asp Glu Val Asp Glu Cys Ser Pro Asn Pro Cys Gln Asn Gly Ala 1155 Thr Cys Thr Asp Tyr Leu Gly Gly Phe Ser Cys Lys Cys Val Ala 1170 Gly Tyr His Gly Ser Asn Cys Ser Glu Glu Ile Asn Glu Cys Leu 1180 Ser Gln Pro Cys Gln Asn Gly 1195 Ser Gln Pro Cys Gln Asn Gly 1195 Ser Tyr Lys Cys Ser Cys Pro Arg Gly Thr Cys Ile Asp 1200 Ser Tyr Lys Cys Ser Cys Pro Arg Gly Thr Cys Ile Asp 1215 Glu Ile Asn Val Asp Asp Cys His Pro Pro Leu Asp Pro Ala Ser 1220 Arg Ser Pro Lys Cys Phe Asn Asn Gly 1225 Gly Gly Tyr Thr Cys Thr Cys Pro Pro Gly Phe Val Gly Glu Arg 1225 Cys Glu Gly Asp Val Asn Glu Cys Leu Ser Asn Pro Cys Asp Pro 1226 Gly Gly Thr Gln Asn Cys Val Asn Gly 1225 Arg Gly Thr Gln Asn Cys Val 1235 Cys Glu Cys Arg Gly His Thr Cys Leu Ser Asn Pro Cys Asp Pro 1228 Glu Cys Arg Ala Gly His Thr Cys Lys Asn Gly Gly Val Cys Ala 1330 Cys Ang Gly Cys Arg Gly Lys Pro Cys Lys Asn Gly Gly Val Cys Ala 1335 Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly		
Leu Leu Cys Gln His Gly Gly Leu Cys Val Asp Glu Gly Asp Lys 1115 His Tyr Cys His Cys Gln Ala Gly Tyr Thr Gly Ser Tyr Cys Glu 1135 Asp Glu Val Asp Glu Cys Ser Pro Asn Pro Cys Gln Ala 1145 Thr Cys Thr Asp Tyr Leu Gly 1165 Gly Tyr His Gly Ser Asn Cys Glu Glu Ile Asn Glu Cys Leu 1175 Ser Gln Pro Cys Gln Asn Gly 1195 Ser Tyr Lys Cys Ser Cys Pro Arg Gly Thr Cys Ile Asp Leu Thr Asn 1195 Glu Ile Asn Val Asp Asp Cys His Pro Pro Leu Asp Pro Ala Ser 1220 Arg Ser Pro Lys Cys Phe Asn Asn Gly Thr Cys Ile Asp 1235 Gly Gly Tyr Thr Cys Thr Cys Pro Pro Gly Phe Val 1245 Gly Gly Tyr Thr Cys Thr Cys Ile Asp Cys Asp Pro 1255 Arg Gly Tyr Thr Cys Thr Cys Pro Pro Gly Phe Val 1266 Gly Gly Tyr Thr Cys Thr Cys Lys Cys Leu Ser Asn Pro Cys Asp Pro 1266 Glu Cys Asp Val Asn Glu Cys Leu Ser Asn Pro Cys Asp Pro 1280 Glu Cys Arg Ala Gly His Thr Cys Lys Asn Gly Gly Cys Cys Pro Ala Ser 1280 And Gly Cys Arg Gly Lys Pro Cys Lys Asn Gly Gly Cys Pro Ala Ser 1295 Ash Gly Cys Arg Gly Lys Pro Cys Lys Asn Gly Gly Cys Pro Ala 1325 Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly Pro Cys Gly Pro Ala Tyz Cys Pro Ala 1325 Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly		
His Tyr Cys His Cys Gln Ala Gly Tyr Thr Gly Ser Tyr Cys Glu 1130 Asp Glu 145 Thr Cys Glu 146 Thr Cys Glu 241 Asp Glu Cys Ser 155 Thr Cys 1160 Thr Cys Thr Asp Tyr Leu Gly 1165 Ser Glu 1175 Ser Gln 777 His Gly Ser Asn Cys Gly Phe Ser Cys Lys Cys Val Ala 1170 Gly Tyr 1176 Fro Cys Gln Asn Gly Gly Thr Cys Ile Asp Glu Cys Leu 1185 Ser Gln 190 Fro Cys Gln Asn Gly Gly Thr Cys Ile Asp Leu Thr Asn 1190 Ser Tyr Lys Cys Ser Cys Pro 1210 Asp Gly Thr Gln Gly Val His Cys 1215 Glu Ile Asn Val Asp Asp Cys Pro Pro Pro Leu Asp Pro Ala Ser 1225 Glu Ile Asn Val Asp Asp Cys Pro 1210 Arg Gly Thr Cys Ile Asp Pro Ala Ser 1225 Gly Gly Thr Cys Thr Cys Thr Cys Pro Pro Leu Asp Pro Ala Ser 1235 Gly Gly Gly Trr Thr Cys Thr Cys Pro Pro Gly Phe Val Gly Gly Arg 1260 Gly Gly Tyr Thr Cys Thr Cys Pro Pro Pro Gly Phe Val Gly Gly Arg 1260 Cys Glu Gly Asp Val Asn Glu 1270 Arg Gly Thr Gln Asn Cys Val 1285 Glu Cys Arg Ala Gly His Thr Gly Arg Arg Cys Glu Ser Val Ile 1300 Asn Gly Cys Arg Gly Lys Pro 1315 Cys Arg Ala Gly Ala Thr Cys Gly Phe Ile Cys Arg Cys Pro Ala 13325 Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly		
Asp Glu Val Asp Glu Cys Ser Pro Asn Pro Cys Gln Asn Gly Ala 1145 Thr Cys Thr Asp Tyr Leu Gly 1165 Gly Tyr His Gly Ser Asn Cys Ser Glu Glu Ile Asn Glu Cys Leu 1175 Ser Gln Pro Cys Gln Asn Gly 1195 Ser Tyr Lys Cys Ser Cys Pro Arg Gly Thr Cys Ile Asp Leu Thr Asn 1200 Glu Ile Asn Val Asp Asp Cys His Pro Pro Leu Asp Pro Ala Ser 1220 Arg Ser Pro Lys Cys Phe Asn Asn Gly Thr Cys Val Asp Glu Val His Cys 1225 Gly Gly Tyr Thr Cys Thr Cys Pro Pro Gly Phe Val 1245 Gly Gly Gly Tyr Thr Cys Thr Cys Pro Pro Gly Phe Val Gly Glu Arg 1250 Cys Glu Gly Asp Val Asn Glu Cys Leu Ser Asn Pro Cys Asp Pro 1265 Thr Gln Asn Cys Val Asp Cys Leu Ser Asn Pro Cys Asp Pro 1265 Glu Cys Arg Ala Gly His Thr Gly Arg Arg Cys Glu Ser Val Ile 1295 Asn Gly Cys Arg Gly Lys Pro Cys Lys Asn Gly Gly Val Cys Ala 1310 Cys Ala Ser Asn Thr Ala Arg Gly Phe Ile Cys Arg Cys Pro Ala 1335 Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly		
1145		
1160		
Ser Gln Pro Cys Gln Asn Gly Gly Thr Cys Ile Asp Leu Thr Asn 1195		
1190 1195 1200 Ser Tyr 1205 Lys Cys Ser Cys Pro 1210 Arg Gly Thr Gln Gly 1215 Val His Cys 1216 Glu Ile 1206 Asn Val Asp Asp Asp 1225 His Pro Pro Leu Asp 1230 Pro Ala Ser 1230 Arg Ser 1225 Pro Lys Cys Phe Asn 1240 Asn Gly Thr Cys Val 1245 Asp Gln Val 1245 Gly Gly 1250 Tyr Thr Cys Thr Cys Thr Cys 1255 Pro Pro Gly Phe Val 1260 Gly Glu Arg 1260 Cys Glu 1265 Gly Asp Val Asn Glu 1270 Cys Leu Ser Asn Pro 1275 Cys Asp Pro 1275 Arg Gly 1280 Thr Gln Asn Cys Val 1285 Gln Arg Val Asn Asp Pro 1290 Phe His Cys 1285 Glu Cys 1295 Arg Ala Gly His Thr 1300 Gly Arg Arg Cys Glu 1305 Ser Val Ile 1305 Asn Gly 1295 Cys Arg Gly Lys Pro 1315 Cys Lys Asn Gly Gly Gly Val Cys Ala 1325 Val Ala 1325 Ser Asn Thr Ala Arg 1330 Gly Phe Ile Cys Arg Cys Pro Ala 1335 Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly		
1205 1210 1215 1215 Glu Ile 1220 Asn Val Asp Asp Cys 1225 His Pro Pro Leu Asp 1230 Pro Ala Ser 1225 Arg Ser 1225 Pro Lys Cys Phe Asn 1240 Asn Gly Thr Cys Val 1245 Asp Gln Val 1245 Gly Gly 1235 Tyr Thr Cys Thr Cys Thr Cys 1255 Pro Pro Gly Phe Val 1260 Gly Glu Arg 1260 Cys Glu 1265 Gly Asp Val Asn Glu 1270 Cys Leu Ser Asn Pro 1275 Cys Asp Pro 1275 Arg Gly 1280 Thr Gln Asn Cys Val 1285 Gln Arg Val Asn Asp 1290 Phe His Cys 1285 Glu Cys 1295 Arg Ala Gly His Thr 1300 Gly Arg Arg Cys Glu 1305 Ser Val Ile 1305 Asn Gly 1295 Cys Arg Gly Lys Pro 1315 Cys Lys Asn Gly Gly Gly Val Cys Ala 1315 Val Ala Ala Ser Asn Thr Ala Arg 1330 Gly Phe Ile Cys Arg Cys Pro Ala 1335 Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly		
1220 1225 1230 Arg Ser 1235 Pro Lys Cys Phe Asn 1240 Asn Gly Thr Cys Val 1245 Asp Gln Val 1246 Gly Gly Gly 1250 Tyr Thr Cys Thr Cys Thr Cys 1255 Pro Pro Gly Phe Val 1260 Gly Glu Arg 1260 Cys Glu 1265 Gly Asp Val Asn Glu 1270 Cys Leu Ser Asn Pro 1275 Cys Asp Pro 1275 Arg Gly 1280 Thr Gln Asn Cys Val 1285 Gln Arg Val Asn Asp Asp Phe His Cys 1290 Glu Cys 1295 Arg Ala Gly His Thr 1300 Gly Arg Arg Cys Glu 1305 Ser Val Ile 1305 Asn Gly 1310 Cys Arg Gly Lys Pro 1315 Cys Lys Asn Gly Gly Gly Val Cys Ala 1325 Val Ala 1325 Ser Asn Thr Ala Arg 1330 Gly Phe Ile Cys Arg Cys Pro Ala 1335 Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly		
1235 1240 1245 Gly Gly Gly 1250 Tyr Thr Cys Thr Cys Thr Cys 1255 Pro Pro Gly Phe Val 1260 Gly Glu Arg 1260 Cys Glu 1265 Gly Asp Val Asn Glu 1270 Cys Leu Ser Asn Pro 1275 Cys Asp Pro 1275 Arg Gly 1280 Thr Gln Asn Cys Val 1285 Gln Arg Val Asn Asp 1290 Phe His Cys 1290 Glu Cys 1295 Arg Ala Gly His Thr 1300 Gly Arg Arg Cys Glu 1305 Ser Val Ile 1300 Asn Gly 1310 Cys Arg Gly Lys Pro 1315 Cys Lys Asn Gly Gly Gly Val Cys Ala 1320 Val Ala 1325 Ser Asn Thr Ala Arg 1330 Gly Phe Ile Cys Arg Cys Pro Ala 1335 Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly		
1250 1255 1260 Cys Glu 1265 Gly Asp Val Asn Glu 1270 Cys Leu Ser Asn Pro 1275 Cys Asp Pro 1275 Arg Gly 1280 Thr Gln Asn Cys Val 1285 Gln Arg Val Asn Asp 1290 Phe His Cys 1290 Glu Cys 1295 Arg Ala Gly His Thr 1300 Gly Arg Arg Cys Glu 1305 Ser Val Ile 1305 Asn Gly 1310 Cys Arg Gly Lys Pro 1315 Cys Lys Asn Gly Gly Gly Val Cys Ala 1320 Val Ala 1325 Ser Asn Thr Ala Arg 1330 Gly Phe Ile Cys Arg Cys Pro Ala 1335 Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly		
Arg Gly 1280 Thr Gln Asn Cys Val 1285 Gln Arg Val Asn Asp 1290 Phe His Cys 1285 Glu Cys 1295 Arg Ala Gly His Thr 1300 Gly Arg Arg Cys Glu 1305 Ser Val Ile 1305 Asn Gly Cys Arg Gly Lys Pro 1310 Cys Lys Asn Gly Gly Gly 1320 Val Cys Ala 1320 Val Ala 325 Ser Asn Thr Ala Arg 1330 Gly Phe Ile Cys Arg Cys Pro Ala 1335 Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly		
1280		
1295 1300 1305 Asn Gly Cys Arg Gly Lys Pro 1315 Cys Lys Asn Gly Gly Gly 1320 Val Cys Ala 1320 Val Ala Ser Asn Thr Ala Arg 1325 Gly Phe Ile Cys Arg 1335 Cys Pro Ala 1335 Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly		
1310 1315 1320 Val Ala Ser Asn Thr Ala Arg 1325 Gly Phe Ile Cys Arg 1335 Cys Pro Ala 1335 Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly Thr Cys Gly		
1325 1330 1335 Gly Phe Glu Gly Ala Thr Cys Glu Asn Asp Ala Arg Thr Cys Gly		
	-	

Ser	Leu 1355	Arg	Cys	Leu	Asn	Gly 1360		Thr	Cys	Ile	Ser 1365		Pro	Arg
Ser	Pro 1370	Thr	Cys	Leu	Сув	Leu 1375		Ser	Phe	Thr	Gly 1380	Pro	Glu	Cys
Gln	Phe 1385	Pro	Ala	Ser	Ser	Pro 1390		Val	Gly	Ser	Asn 1395	Pro	СЛа	Tyr
Asn	Gln 1400	Gly	Thr	Cys	Glu	Pro 1405		Ser	Glu	Asn	Pro 1410	Phe	Tyr	Arg
CAa	Leu 1415		Pro	Ala	Lys	Phe 1420		Gly	Leu	Leu	Cys 1425	His	Ile	Leu
Asp	Tyr 1430	Ser	Phe	Thr	Gly	Gly 1435		Gly	Arg	Asp	Ile 1440	Pro	Pro	Pro
Gln	Ile 1445	Glu	Glu	Ala	СЛа	Glu 1450		Pro	Glu	CAa	Gln 1455	Val	Asp	Ala
Gly	Asn 1460	rÅa	Val	CÀa	Asn	Leu 1465		CÀa	Asn	Asn	His 1470	Ala	CÀa	Gly
Trp	Asp 1475	Gly	Gly	Asp	Cys	Ser 1480		Asn	Phe	Asn	Asp 1485	Pro	Trp	Lys
Asn	Cys 1490	Thr	Gln	Ser	Leu	Gln 1495	-	Trp	Lys	Tyr	Phe 1500		Asp	Gly
His	Cys 1505	Asp	Ser	Gln	Cys	Asn 1510		Ala	Gly	CÀa	Leu 1515	Phe	Asp	Gly
Phe	Asp 1520		Gln	Leu	Thr	Glu 1525		Gln	Cys	Asn	Pro 1530		Tyr	Asp
Gln	Tyr 1535	CAa	ГÀЗ	Asp	His	Phe 1540		Asp	Gly	His	Сув 1545	Asp	Gln	Gly
CAa	Asn 1550	Ser	Ala	Glu	Cys	Glu 1555		Asp	Gly	Leu	Asp 1560		Ala	Glu
His	Val 1565	Pro	Glu	Arg	Leu	Ala 1570	Ala	Gly	Thr	Leu	Val 1575		Val	Val
Leu	Leu 1580	Pro	Pro	Asp	Gln	Leu 1585	Arg	Asn	Asn	Ser	Phe 1590	His	Phe	Leu
Arg	Glu 1595	Leu	Ser	His	Val	Leu 1600	His	Thr	Asn	Val	Val 1605	Phe	Lys	Arg
Asp	Ala 1610	Gln	Gly	Gln	Gln	Met 1615		Phe	Pro	Tyr	Tyr 1620	Gly	His	Glu
Glu	Glu 1625	Leu	Arg	Lys	His	Pro 1630	Ile	Lys	Arg	Ser	Thr 1635	Val	Gly	Trp
Ala	Thr 1640	Ser	Ser	Leu	Leu	Pro 1645	Gly	Thr	Ser	Gly	Gly 1650	Arg	Gln	Arg
Arg	Glu 1655	Leu	Asp	Pro	Met	Asp 1660	Ile	Arg	Gly	Ser	Ile 1665	Val	Tyr	Leu
Glu	Ile 1670	Asp	Asn	Arg	Gln	Cys 1675	Val	Gln	Ser	Ser	Ser 1680	Gln	CÀa	Phe
Gln	Ser 1685	Ala	Thr	Asp	Val	Ala 1690	Ala	Phe	Leu	Gly	Ala 1695	Leu	Ala	Ser
Leu	Gly 1700	Ser	Leu	Asn	Ile	Pro 1705	Tyr	Lys	Ile	Glu	Ala 1710	Val	Lys	Ser
Glu	Pro 1715	Val	Glu	Pro	Pro	Leu 1720	Pro	Ser	Gln	Leu	His 1725	Leu	Met	Tyr
Val	Ala 1730	Ala	Ala	Ala	Phe	Val 1735	Leu	Leu	Phe	Phe	Val 1740	Gly	Cys	Gly

Val	Leu 1745	Leu	Ser	Arg	Lys	Arg 1750	Arg	Arg	Gln	His	Gly 1755	Gln	Leu	Trp
Phe	Pro 1760	Glu	Gly	Phe	Lys	Val 1765	Ser	Glu	Ala	Ser	Lys 1770	Lys	Lys	Arg
Arg	Glu 1775	Pro	Leu	Gly	Glu	Asp 1780	Ser	Val	Gly	Leu	Lys 1785	Pro	Leu	ГÀа
Asn	Ala 1790	Ser	Asp	Gly	Ala	Leu 1795	Met	Asp	Asp	Asn	Gln 1800	Asn	Glu	Trp
Gly	Asp 1805	Glu	Asp	Leu	Glu	Thr 1810	Lys	Lys	Phe	Arg	Phe 1815	Glu	Glu	Pro
Val	Val 1820	Leu	Pro	Asp	Leu	Ser 1825	Asp	Gln	Thr	Asp	His 1830	Arg	Gln	Trp
Thr	Gln 1835	Gln	His	Leu	Asp	Ala 1840	Ala	Asp	Leu	Arg	Met 1845	Ser	Ala	Met
Ala	Pro 1850	Thr	Pro	Pro	Gln	Gly 1855	Glu	Val	Asp	Ala	Asp 1860	Cys	Met	Asp
Val	Asn 1865	Val	Arg	Gly	Pro	Asp 1870	Gly	Phe	Thr	Pro	Leu 1875	Met	Ile	Ala
Ser	Cys 1880	Ser	Gly	Gly	Gly	Leu 1885	Glu	Thr	Gly	Asn	Ser 1890	Glu	Glu	Glu
Glu	Asp 1895	Ala	Pro	Ala	Val	Ile 1900	Ser	Asp	Phe	Ile	Tyr 1905	Gln	Gly	Ala
Ser	Leu 1910	His	Asn	Gln	Thr	Asp 1915	Arg	Thr	Gly	Glu	Thr 1920	Ala	Leu	His
Leu	Ala 1925	Ala	Arg	Tyr	Ser	Arg 1930	Ser	Asp	Ala	Ala	Lys 1935	Arg	Leu	Leu
Glu	Ala 1940	Ser	Ala	Aap	Ala	Asn 1945	Ile	Gln	Asp	Asn	Met 1950	Gly	Arg	Thr
Pro	Leu 1955	His	Ala	Ala	Val	Ser 1960	Ala	Asp	Ala	Gln	Gly 1965	Val	Phe	Gln
Ile	Leu 1970	Leu	Arg	Asn	Arg	Ala 1975	Thr	Aap	Leu	Asp	Ala 1980	Arg	Met	His
Asp	Gly 1985	Thr	Thr	Pro	Leu	Ile 1990	Leu	Ala	Ala	Arg	Leu 1995	Ala	Val	Glu
Gly	Met 2000	Leu	Glu	Asp	Leu	Ile 2005	Asn	Ser	His	Ala	Asp 2010	Val	Asn	Ala
Val	Asp 2015		Leu	Gly		Ser 2020		Leu	His	Trp	Ala 2025		Ala	Val
Asn	Asn 2030	Val	Asp	Ala	Ala	Val 2035	Val	Leu	Leu	Lys	Asn 2040	Gly	Ala	Asn
Lys	Asp 2045	Met	Gln	Asn	Asn	Lys 2050	Glu	Glu	Thr	Pro	Leu 2055	Phe	Leu	Ala
Ala	Arg 2060	Glu	Gly	Ser	Tyr	Glu 2065	Thr	Ala	ГЛа	Val	Leu 2070	Leu	Asp	His
Phe	Ala 2075	Asn	Arg	Asp	Ile	Thr 2080	Asp	His	Met	Asp	Arg 2085	Leu	Pro	Arg
Asp	Ile 2090	Ala	Gln	Glu	Arg	Met 2095	His	His	Asp	Ile	Val 2100	Arg	Leu	Leu
Asp	Glu 2105	Tyr	Asn	Leu	Val	Arg 2110	Ser	Pro	Gln	Leu	His 2115	Gly	Thr	Ala
Leu	Gly 2120	Gly	Thr	Pro	Thr	Leu 2125	Ser	Pro	Thr	Leu	Cys 2130	Ser	Pro	Asn
Gly	Tyr	Leu	Gly	Asn	Leu	Lys	Ser	Ala	Thr	Gln	Gly	Lys	Lys	Ala

- C	ontinued
- C	ontinued

	2135					2140					2145			
Arg	Lys 2150	Pro	Ser	Thr	Lys	Gly 2155	Leu	Ala	Cys	Gly	Ser 2160	Lys	Glu	Ala
Lys	Asp 2165	Leu	ГÀз	Ala	Arg	Arg 2170	ГÀз	ГÀз	Ser	Gln	Asp 2175	Gly	ràa	Gly
CAa	Leu 2180	Leu	Asp	Ser	Ser	Ser 2185	Met	Leu	Ser	Pro	Val 2190	Asp	Ser	Leu
Glu	Ser 2195	Pro	His	Gly	Tyr	Leu 2200	Ser	Asp	Val	Ala	Ser 2205	Pro	Pro	Leu
Leu	Pro 2210	Ser	Pro	Phe	Gln	Gln 2215	Ser	Pro	Ser	Met	Pro 2220	Leu	Ser	His
Leu	Pro 2225	Gly	Met	Pro	Asp	Thr 2230	His	Leu	Gly	Ile	Ser 2235	His	Leu	Asn
Val	Ala 2240	Ala	Lys	Pro	Glu	Met 2245	Ala	Ala	Leu	Ala	Gly 2250	Gly	Ser	Arg
Leu	Ala 2255	Phe	Glu	Pro	Pro	Pro 2260	Pro	Arg	Leu	Ser	His 2265	Leu	Pro	Val
Ala	Ser 2270	Ser	Ala	Ser	Thr	Val 2275	Leu	Ser	Thr	Asn	Gly 2280	Thr	Gly	Ala
Met	Asn 2285	Phe	Thr	Val	Gly	Ala 2290	Pro	Ala	Ser	Leu	Asn 2295	Gly	Gln	CAa
Glu	Trp 2300	Leu	Pro	Arg	Leu	Gln 2305	Asn	Gly	Met	Val	Pro 2310	Ser	Gln	Tyr
Asn	Pro 2315	Leu	Arg	Pro	Gly	Val 2320	Thr	Pro	Gly	Thr	Leu 2325	Ser	Thr	Gln
Ala	Ala 2330	Gly	Leu	Gln	His	Ser 2335	Met	Met	Gly	Pro	Leu 2340	His	Ser	Ser
Leu	Ser 2345	Thr	Asn	Thr	Leu	Ser 2350	Pro	Ile	Ile	Tyr	Gln 2355	Gly	Leu	Pro
Asn	Thr 2360	Arg	Leu	Ala	Thr	Gln 2365	Pro	His	Leu	Val	Gln 2370	Thr	Gln	Gln
Val	Gln 2375	Pro	Gln	Asn	Leu	Gln 2380	Leu	Gln	Pro	Gln	Asn 2385	Leu	Gln	Pro
Pro	Ser 2390	Gln	Pro	His	Leu	Ser 2395	Val	Ser	Ser	Ala	Ala 2400	Asn	Gly	His
Leu	Gly 2405	Arg	Ser	Phe	Leu	Ser 2410	Gly	Glu	Pro	Ser	Gln 2415	Ala	Asp	Val
Gln	Pro 2420	Leu	Gly	Pro	Ser	Ser 2425	Leu	Pro	Val	His	Thr 2430	Ile	Leu	Pro
Gln	Glu 2435	Ser	Gln	Ala	Leu	Pro 2440	Thr	Ser	Leu	Pro	Ser 2445	Ser	Met	Val
Pro	Pro 2450	Met	Thr	Thr	Thr	Gln 2455	Phe	Leu	Thr	Pro	Pro 2460	Ser	Gln	His
Ser	Tyr 2465	Ser	Ser	Ser	Pro	Val 2470	Asp	Asn	Thr	Pro	Ser 2475	His	Gln	Leu
Gln	Val 2480	Pro	Glu	His	Pro	Phe 2485	Leu	Thr	Pro	Ser	Pro 2490	Glu	Ser	Pro
Asp	Gln 2495	Trp	Ser	Ser	Ser	Ser 2500	Pro	His	Ser	Asn	Ile 2505	Ser	Asp	Trp
Ser	Glu 2510	Gly	Ile	Ser	Ser	Pro 2515	Pro	Thr	Thr	Met	Pro 2520	Ser	Gln	Ile
Thr	His 2525	Ile	Pro	Glu	Ala	Phe 2530	Lys							

<211 <212	L> LI 2> T	EQ II ENGTI YPE : RGANI	H: 23	321	o sap	piens	3								
< 400)> SI	EQUEI	ICE :	3											
Met 1	Gly	Pro	Gly	Ala 5	Arg	Gly	Arg	Arg	Arg 10	Arg	Arg	Arg	Pro	Met 15	Ser
Pro	Pro	Pro	Pro 20	Pro	Pro	Pro	Val	Arg 25	Ala	Leu	Pro	Leu	Leu 30	Leu	Leu
Leu	Ala	Gly 35	Pro	Gly	Ala	Ala	Ala 40	Pro	Pro	Сув	Leu	Asp 45	Gly	Ser	Pro
Cys	Ala 50	Asn	Gly	Gly	Arg	Сув 55	Thr	Gln	Leu	Pro	Ser 60	Arg	Glu	Ala	Ala
Сув 65	Leu	Cys	Pro	Pro	Gly 70	Trp	Val	Gly	Glu	Arg 75	Cys	Gln	Leu	Glu	Asp
Pro	Cya	His	Ser	Gly 85	Pro	CAa	Ala	Gly	Arg 90	Gly	Val	CÀa	Gln	Ser 95	Ser
Val	Val	Ala	Gly 100	Thr	Ala	Arg	Phe	Ser 105	Сув	Arg	Cys	Pro	Arg 110	Gly	Phe
Arg	Gly	Pro 115	Asp	CÀa	Ser	Leu	Pro 120	Asp	Pro	Cys	Leu	Ser 125	Ser	Pro	Cys
Ala	His 130	Gly	Ala	Arg	Cys	Ser 135	Val	Gly	Pro	Asp	Gly 140	Arg	Phe	Leu	Cys
Ser 145	Cys	Pro	Pro	Gly	Tyr 150	Gln	Gly	Arg	Ser	Суs 155	Arg	Ser	Asp	Val	Asp 160
Glu	Сла	Arg	Val	Gly 165	Glu	Pro	CÀa	Arg	His 170	Gly	Gly	Thr	Сла	Leu 175	Asn
Thr	Pro	Gly	Ser 180	Phe	Arg	CÀa	Gln	Сув 185	Pro	Ala	Gly	Tyr	Thr 190	Gly	Pro
Leu	Сла	Glu 195	Asn	Pro	Ala	Val	Pro 200	Сла	Ala	Pro	Ser	Pro 205	Cya	Arg	Asn
Gly	Gly 210	Thr	Cys	Arg	Gln	Ser 215	Gly	Asp	Leu	Thr	Tyr 220	Asp	Сув	Ala	Cys
Leu 225	Pro	Gly	Phe	Glu	Gly 230	Gln	Asn	Cys	Glu	Val 235	Asn	Val	Asp	Asp	Cys 240
Pro	Gly	His	Arg	Сув 245	Leu	Asn	Gly	Gly	Thr 250	Сув	Val	Asp	Gly	Val 255	Asn
Thr	Tyr	Asn	Сув 260	Gln	Сув	Pro	Pro	Glu 265	Trp	Thr	Gly	Gln	Phe 270	Cys	Thr
Glu	Asp	Val 275	Asp	Glu	CAa	Gln	Leu 280	Gln	Pro	Asn	Ala	Сув 285	His	Asn	Gly
Gly	Thr 290	Cys	Phe	Asn	Thr	Leu 295	Gly	Gly	His	Ser	300 200	Val	Cys	Val	Asn
Gly 305	Trp	Thr	Gly	Glu	Ser 310	CÀa	Ser	Gln	Asn	Ile 315	Asp	Asp	СЛа	Ala	Thr 320
Ala	Val	Cys	Phe	His 325	Gly	Ala	Thr	Сла	His 330	Asp	Arg	Val	Ala	Ser 335	Phe
Tyr	Сув	Ala	Cys 340	Pro	Met	Gly	Lys	Thr 345	Gly	Leu	Leu	Сув	His 350	Leu	Asp
Asp	Ala	Сув 355	Val	Ser	Asn	Pro	Cys	His	Glu	Asp	Ala	Ile 365	Cys	Asp	Thr
Asn	Pro	Val	Asn	Gly	Arg	Ala	Ile	Cys	Thr	Cys	Pro	Pro	Gly	Phe	Thr

_															
	370					375					380				
Gly 385	Gly	Ala	Cys	Asp	Gln 390	Asp	Val	Asp	Glu	Сув 395	Ser	Ile	Gly	Ala	Asn 400
Pro	Сув	Glu	His	Leu 405	Gly	Arg	Сла	Val	Asn 410	Thr	Gln	Gly	Ser	Phe 415	Leu
CÀa	Gln	Сла	Gly 420	Arg	Gly	Tyr	Thr	Gly 425	Pro	Arg	CÀa	Glu	Thr 430	Asp	Val
Asn	Glu	Сув 435	Leu	Ser	Gly	Pro	Cys 440	Arg	Asn	Gln	Ala	Thr 445	CÀa	Leu	Asp
Arg	Ile 450	Gly	Gln	Phe	Thr	Сув 455	Ile	Cha	Met	Ala	Gly 460	Phe	Thr	Gly	Thr
Tyr 465	CÀa	Glu	Val	Asp	Ile 470	Asp	Glu	Cys	Gln	Ser 475	Ser	Pro	CÀa	Val	Asn 480
Gly	Gly	Val	CÀa	Lys 485	Asp	Arg	Val	Asn	Gly 490	Phe	Ser	CÀa	Thr	Сув 495	Pro
Ser	Gly	Phe	Ser 500	Gly	Ser	Thr	Cha	Gln 505	Leu	Asp	Val	Asp	Glu 510	CÀa	Ala
Ser	Thr	Pro 515	CÀa	Arg	Asn	Gly	Ala 520	Lys	Cys	Val	Asp	Gln 525	Pro	Asp	Gly
Tyr	Glu 530	Cys	Arg	CAa	Ala	Glu 535	Gly	Phe	Glu	Gly	Thr 540	Leu	Cha	Asp	Arg
Asn 545	Val	Asp	Asp	CAa	Ser 550	Pro	Asp	Pro	Cha	His 555	His	Gly	Arg	CÀa	Val 560
Asp	Gly	Ile	Ala	Ser 565	Phe	Ser	Cha	Ala	Сув 570	Ala	Pro	Gly	Tyr	Thr 575	Gly
Thr	Arg	Cys	Glu 580	Ser	Gln	Val	Asp	Glu 585	Càa	Arg	Ser	Gln	Pro 590	CÀa	Arg
His	Gly	Gly 595	Lys	CAa	Leu	Asp	Leu 600	Val	Asp	Lys	Tyr	Leu 605	СЛа	Arg	Сув
Pro	Ser 610	Gly	Thr	Thr	Gly	Val 615	Asn	Cys	Glu	Val	Asn 620	Ile	Asp	Asp	Сув
Ala 625	Ser	Asn	Pro	CAa	Thr 630	Phe	Gly	Val	Cys	Arg 635	Asp	Gly	Ile	Asn	Arg 640
Tyr	Asp	Сув	Val	Cys 645	Gln	Pro	Gly	Phe	Thr 650	Gly	Pro	Leu	Cha	Asn 655	Val
Glu	Ile	Asn	Glu 660	САа	Ala	Ser	Ser	Pro 665	Сув	Gly	Glu	Gly	Gly 670	Ser	CÀa
Val	Asp	Gly 675	Glu	Asn	Gly	Phe	Arg 680	Cys	Leu	Сув	Pro	Pro 685	Gly	Ser	Leu
Pro	Pro 690	Leu	Cys	Leu	Pro	Pro 695	Ser	His	Pro	Сув	Ala 700	His	Glu	Pro	CÀa
Ser 705	His	Gly	Ile	CAa	Tyr 710	Asp	Ala	Pro	Gly	Gly 715	Phe	Arg	Cys	Val	Cys 720
Glu	Pro	Gly	Trp	Ser 725	Gly	Pro	Arg	Cha	Ser 730	Gln	Ser	Leu	Ala	Arg 735	Asp
Ala	Cys	Glu	Ser 740	Gln	Pro	Cys	Arg	Ala 745	Gly	Gly	Thr	CÀa	Ser 750	Ser	Asp
Gly	Met	Gly 755	Phe	His	Cys	Thr	Cys 760	Pro	Pro	Gly	Val	Gln 765	Gly	Arg	Gln
СЛа	Glu 770	Leu	Leu	Ser	Pro	Cys 775	Thr	Pro	Asn	Pro	Cys 780	Glu	His	Gly	Gly
Arg 785	Cys	Glu	Ser	Ala	Pro 790	Gly	Gln	Leu	Pro	Val 795	Cys	Ser	Cys	Pro	Gln 800

Gly	Trp	Gln		Pro 805	Arg	Cys	Gln	Gln	Asp 810	Val	Asp	Glu	. Сув	Ala 815	Gly
Pro	Ala	Pro	Cys 820	Gly	Pro	His	Gly	Ile 825	Cys	Thr	Asn	Leu	Ala 830		Ser
Phe	Ser	Сув 835	Thr	Cys	His	Gly	Gly 840	Tyr	Thr	Gly	Pro	Ser 845		Asp	Gln
Asp	Ile 850	Asn	Asp	Сув		Pro 855	Asn	Pro	Сув	Leu	Asn 860	Gly	Gly	Ser	Cha
Gln 865	Asp	Gly	Val		Ser 870	Phe	Ser	СЛа	Ser	Сув 875	Leu	Pro	Gly	Phe	Ala 880
Gly	Pro	Arg	CAa	Ala 885	Arg	Asp	Val	Asp	Glu 890	CÀa	Leu	Ser	Asn	Pro 895	Cys
Gly	Pro	Gly	Thr 900	Cys	Thr	Asp	His	Val 905	Ala	Ser	Phe	Thr	Суя 910		CAa
Pro	Pro	Gly 915	Tyr	Gly	Gly	Phe	His 920	Сув	Glu	Gln	Asp	Leu 925		Asp	Cys
Ser	Pro 930	Ser	Ser	Cys		Asn 935	Gly	Gly	Thr	Cys	Val 940	Asp	Gly	· Val	Asn
Ser 945	Phe	Ser	CAa		Сув 950	Arg	Pro	Gly	Tyr	Thr 955	Gly	Ala	His	Cys	Gln 960
His	Glu	Ala		Pro 965	Cys	Leu	Ser	Arg	Pro 970	СЛа	Leu	His	Gly	Gly 975	Val
CÀa	Ser	Ala	Ala 980	His	Pro	Gly	Phe	Arg 985	Сув	Thr	Cys	Leu	Glu 990		Phe
Thr	Gly	Pro 995	Gln	Cya	Gln	Thr	Leu 1000		Asl	o Tr	су:		r A 05	rg G	ln Pro
Cys	Gln 1010		n Gly	Gly	Arg	Суя 101		al G	ln Th	nr G		la 020	Tyr	CÀa	Leu
СЛа	Pro 1025		Gly	Trp	Ser	Gly 103		g Le	eu Cy	a Ya		le 035	Arg	Ser	Leu
Pro	Сув 1040		g Glu	Ala	Ala	Ala 104		ln II	Le GI	ly Va		rg 050	Leu	Glu	Gln
Leu	1055 1055		n Ala	Gly	Gly	Glr 106		rs Va	al As	sp G		sp 065	Ser	Ser	His
Tyr	Сув 1070		. Cys	Pro	Glu	Gly 107		g Th	ır Gl	ly Se		is 080	Cya	Glu	Gln
	1085	5) Pro			109	0				10	095			
	1100)	y Tyr			110)5				1:	110			
_	1115	5	/ Asp			112	0:0	-	_		1:	125	-		
Gln	Pro 1130	_	s Gln	His	Gly	Gl _y 113		er Cy	s II	le As	_	eu 140	Val	Ala	Arg
Tyr		-	Ser	Cys	Pro	Pro 115		Ly Th	ır Le	eu G	-	al 155	Leu	CÀa	Glu
	1145	•													
Ile		Glu	ı Asp	Asp	Cys			:0 GI	Ly Pi	ro Pi		∋u 170	Asp	Ser	Gly
	Asn 1160	Glu) Cys	ı Asp	Ī		Gly 116	55 7 Th		-		1: sp Le	170	_		-

Ala	Asp 1205	Ile	Asn	Glu	Cys	Arg 1210	Ser	Gly	Ala	CÀa	His 1215	Ala	Ala	His
Thr	Arg 1220	Asp	Cys	Leu	Gln	Asp 1225	Pro	Gly	Gly	Gly	Phe 1230	Arg	CAa	Leu
CAa	His 1235	Ala	Gly	Phe	Ser	Gly 1240	Pro	Arg	CAa	Gln	Thr 1245	Val	Leu	Ser
Pro	Cys 1250	Glu	Ser	Gln	Pro	Cys 1255	Gln	His	Gly	Gly	Gln 1260	Cys	Arg	Pro
Ser	Pro 1265	Gly	Pro	Gly	Gly	Gly 1270	Leu	Thr	Phe	Thr	Cys 1275	His	CÀa	Ala
Gln	Pro 1280	Phe	Trp	Gly	Pro	Arg 1285	Cys	Glu	Arg	Val	Ala 1290	Arg	Ser	СЛа
Arg	Glu 1295	Leu	Gln	Cys	Pro	Val 1300	Gly	Val	Pro	CÀa	Gln 1305	Gln	Thr	Pro
Arg	Gly 1310	Pro	Arg	Cys	Ala	Cys 1315	Pro	Pro	Gly	Leu	Ser 1320	Gly	Pro	Ser
CÀa	Arg 1325	Ser	Phe	Pro	Gly	Ser 1330	Pro	Pro	Gly	Ala	Ser 1335	Asn	Ala	Ser
CÀa	Ala 1340	Ala	Ala	Pro	Cys	Leu 1345	His	Gly	Gly	Ser	Сув 1350	Arg	Pro	Ala
Pro	Leu 1355	Ala	Pro	Phe	Phe	Arg 1360	CÀa	Ala	CÀa	Ala	Gln 1365	Gly	Trp	Thr
Gly	Pro 1370	Arg	Cys	Glu	Ala	Pro 1375	Ala	Ala	Ala	Pro	Glu 1380	Val	Ser	Glu
Glu	Pro 1385	Arg	Cys	Pro	Arg	Ala 1390	Ala	Cys	Gln	Ala	Lys 1395	Arg	Gly	Asp
Gln	Arg 1400	Cys	Asp	Arg	Glu	Cys 1405	Asn	Ser	Pro	Gly	Cys 1410	Gly	Trp	Asp
Gly	Gly 1415	Asp	Cys	Ser	Leu	Ser 1420	Val	Gly	Asp	Pro	Trp 1425	Arg	Gln	CAa
Glu	Ala 1430	Leu	Gln	Cys	Trp	Arg 1435	Leu	Phe	Asn	Asn	Ser 1440	Arg	CÀa	Asp
Pro	Ala 1445	Cys	Ser	Ser	Pro	Ala 1450	Cys	Leu	Tyr	Asp	Asn 1455	Phe	Asp	CÀa
His	Ala 1460	Gly	Gly	Arg	Glu	Arg 1465	Thr	Сув	Asn	Pro	Val 1470	Tyr	Glu	ГÀа
Tyr	Cys 1475	Ala	Asp	His	Phe	Ala 1480	Asp	Gly	Arg	Cys	Asp 1485	Gln	Gly	CAa
Asn	Thr 1490	Glu	Glu	Cys	Gly	Trp 1495	Asp	Gly	Leu	Asp	Cys 1500	Ala	Ser	Glu
Val	Pro 1505	Ala	Leu	Leu	Ala	Arg 1510	Gly	Val	Leu	Val	Leu 1515	Thr	Val	Leu
Leu	Pro 1520	Pro	Glu	Glu	Leu	Leu 1525	Arg	Ser	Ser	Ala	Asp 1530	Phe	Leu	Gln
Arg	Leu 1535	Ser	Ala	Ile	Leu	Arg 1540	Thr	Ser	Leu	Arg	Phe 1545	Arg	Leu	Asp
Ala	His 1550	Gly	Gln	Ala	Met	Val 1555	Phe	Pro	Tyr	His	Arg 1560	Pro	Ser	Pro
Gly	Ser 1565	Glu	Pro	Arg	Ala	Arg 1570	Arg	Glu	Leu	Ala	Pro 1575	Glu	Val	Ile
Gly	Ser 1580	Val	Val	Met	Leu	Glu 1585	Ile	Asp	Asn	Arg	Leu 1590	Cys	Leu	Gln
Ser	Pro	Glu	Asn	Asp	His	Cys	Phe	Pro	Asp	Ala	Gln	Ser	Ala	Ala

-cont:	inued
-cont:	inued

	1595					1600					1605			
Asp	Tyr 1610	Leu	Gly	Ala	Leu	Ser 1615	Ala	Val	Glu	Arg	Leu 1620	Asp	Phe	Pro
Tyr	Pro 1625	Leu	Arg	Asp	Val	Arg 1630	Gly	Glu	Pro	Leu	Glu 1635	Pro	Pro	Glu
Pro	Ser 1640	Val	Pro	Leu	Leu	Pro 1645	Leu	Leu	Val	Ala	Gly 1650	Ala	Val	Leu
Leu	Leu 1655	Val	Ile	Leu	Val	Leu 1660	-	Val	Met	Val	Ala 1665	Arg	Arg	ГÀз
Arg	Glu 1670	His	Ser	Thr	Leu	Trp 1675		Pro	Glu	Gly	Phe 1680		Leu	His
ГÀа	Asp 1685	Val	Ala	Ser	Gly	His 1690	Lys	Gly	Arg	Arg	Glu 1695	Pro	Val	Gly
Gln	Asp 1700	Ala	Leu	Gly	Met	Lys 1705	Asn	Met	Ala	ГÀа	Gly 1710	Glu	Ser	Leu
Met	Gly 1715	Glu	Val	Ala	Thr	Asp 1720		Met	Asp	Thr	Glu 1725		Pro	Glu
Ala	Lys 1730	Arg	Leu	Lys	Val	Glu 1735		Pro	Gly	Met	Gly 1740	Ala	Glu	Glu
Ala	Val 1745	Asp	Cys	Arg	Gln	Trp 1750	Thr	Gln	His	His	Leu 1755	Val	Ala	Ala
Asp	Ile 1760	Arg	Val	Ala	Pro	Ala 1765	Met	Ala	Leu	Thr	Pro 1770	Pro	Gln	Gly
Asp	Ala 1775	Asp	Ala	Asp	Gly	Met 1780	_	Val	Asn	Val	Arg 1785	Gly	Pro	Asp
Gly	Phe 1790	Thr	Pro	Leu	Met	Leu 1795	Ala	Ser	Phe	Cya	Gly 1800	Gly	Ala	Leu
Glu	Pro 1805	Met	Pro	Thr	Glu	Glu 1810	Asp	Glu	Ala	Asp	Asp 1815	Thr	Ser	Ala
Ser	Ile 1820	Ile	Ser	Asp	Leu	Ile 1825	Сув	Gln	Gly	Ala	Gln 1830	Leu	Gly	Ala
Arg	Thr 1835	Asp	Arg	Thr	Gly	Glu 1840	Thr	Ala	Leu	His	Leu 1845	Ala	Ala	Arg
Tyr	Ala 1850	_	Ala	Asp	Ala	Ala 1855	_	Arg	Leu	Leu	Asp 1860	Ala	Gly	Ala
Asp	Thr 1865	Asn	Ala	Gln	Asp	His 1870	Ser	Gly	Arg	Thr	Pro 1875	Leu	His	Thr
Ala	Val 1880	Thr	Ala	Asp	Ala	Gln 1885	Gly	Val	Phe	Gln	Ile 1890		Ile	Arg
Asn	Arg 1895	Ser	Thr	Asp	Leu	Asp 1900	Ala	Arg	Met	Ala	Asp 1905	Gly	Ser	Thr
Ala	Leu 1910	Ile	Leu	Ala	Ala	Arg 1915	Leu	Ala	Val	Glu	Gly 1920		Val	Glu
Glu	Leu 1925	Ile	Ala	Ser	His	Ala 1930	Asp	Val	Asn	Ala	Val 1935	Asp	Glu	Leu
Gly	Lys 1940	Ser	Ala	Leu	His	Trp 1945	Ala	Ala	Ala	Val	Asn 1950	Asn	Val	Glu
Ala	Thr 1955	Leu	Ala	Leu	Leu	Lys 1960	Asn	Gly	Ala	Asn	Lys 1965	Asp	Met	Gln

Asp	Ser	Lys	Glu	Glu	Thr	Pro	Leu	Phe	Leu	Ala	Ala	Arg	Glu	Gly	
-	1970	•				1975					1980			-	
Ser	Tyr 1985	Glu	Ala	Ala	Lys	Leu 1990	Leu	Leu	Asp	His	Phe 1995	Ala	Asn	Arg	
Glu	Ile 2000	Thr	Asp	His	Leu	Asp 2005	Arg	Leu	Pro	Arg	Asp 2010	Val	Ala	Gln	
Glu	Arg 2015	Leu	His	Gln	Asp	Ile 2020	Val	Arg	Leu	Leu	Asp 2025	Gln	Pro	Ser	
Gly	Pro 2030	Arg	Ser	Pro	Pro	Gly 2035	Pro	His	Gly	Leu	Gly 2040	Pro	Leu	Leu	
Cys	Pro 2045	Pro	Gly	Ala	Phe	Leu 2050	Pro	Gly	Leu	Lys	Ala 2055	Ala	Gln	Ser	
Gly	Ser 2060	Lys	Lys	Ser	Arg	Arg 2065	Pro	Pro	Gly	Lys	Ala 2070	Gly	Leu	Gly	
Pro	Gln 2075	Gly	Pro	Arg	Gly	Arg 2080	Gly	Lys	Lys	Leu	Thr 2085	Leu	Ala	Cha	
Pro	Gly 2090	Pro	Leu	Ala	Asp	Ser 2095	Ser	Val	Thr	Leu	Ser 2100	Pro	Val	Aap	
Ser	Leu 2105	Asp	Ser	Pro	Arg	Pro 2110	Phe	Gly	Gly	Pro	Pro 2115	Ala	Ser	Pro	
Gly	Gly 2120	Phe	Pro	Leu	Glu	Gly 2125	Pro	Tyr	Ala	Ala	Ala 2130	Thr	Ala	Thr	
Ala	Val 2135	Ser	Leu	Ala	Gln	Leu 2140	Gly	Gly	Pro	Gly	Arg 2145	Ala	Gly	Leu	
Gly	Arg 2150	Gln	Pro	Pro	Gly	Gly 2155	Сла	Val	Leu	Ser	Leu 2160	Gly	Leu	Leu	
Asn	Pro 2165	Val	Ala	Val	Pro	Leu 2170	Asp	Trp	Ala	Arg	Leu 2175	Pro	Pro	Pro	
Ala	Pro 2180	Pro	Gly	Pro	Ser	Phe 2185	Leu	Leu	Pro	Leu	Ala 2190	Pro	Gly	Pro	
Gln	Leu 2195	Leu	Asn	Pro	Gly	Thr 2200	Pro	Val	Ser	Pro	Gln 2205	Glu	Arg	Pro	
Pro	Pro 2210	Tyr	Leu	Ala	Val	Pro 2215	Gly	His	Gly	Glu	Glu 2220	Tyr	Pro	Val	
Ala	Gly 2225	Ala	His	Ser	Ser	Pro 2230	Pro	Lys	Ala	Arg	Phe 2235	Leu	Arg	Val	
Pro	Ser 2240	Glu	His	Pro	Tyr	Leu 2245	Thr	Pro	Ser	Pro	Glu 2250	Ser	Pro	Glu	
His	Trp 2255		Ser	Pro	Ser	Pro 2260		Ser	Leu	Ser	Asp 2265		Ser	Glu	
Ser	Thr 2270		Ser	Pro	Ala	Thr 2275		Thr	Gly	Ala	Met 2280	Ala	Thr	Thr	
Thr	Gly 2285		Leu	Pro	Ala	Gln 2290		Leu	Pro	Leu	Ser 2295	Val	Pro	Ser	
Ser	Leu 2300	Ala	Gln	Ala	Gln	Thr 2305	Gln	Leu	Gly	Pro	Gln 2310	Pro	Glu	Val	
Thr	Pro 2315	rys	Arg	Gln	Val	Leu 2320	Ala								

<2112 DENGIN. 14
<2122 TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic

peptide
<400> SEQUENCE: 4

Val Met Val Ala Arg Arg Lys Arg Glu His Ser Thr Leu Trp

What is claimed is:

- 1. A method of treating a Gamma-secretase inhibitor (GSI)-responsive T-cell leukemia that does not respond to a Notch1-specific antagonist, the method comprising administering to a patient having such leukemia an effective amount of an anti-Notch3 antagonist antibody.
- 2. The method of claim 1, wherein the T-cell leukemia is a lymphoblastic leukemia.
- 3. The method of claim 2, wherein the lymphoblastic leukemia is T-lineage acute lymphoblastic leukemia (T-ALL).
- **4**. The method of claim 1, wherein the anti-Notch3 antagonist antibody is an anti-Notch3 negative regulatory region (NRR) antibody.
- **5**. The method of claim **4**, wherein the anti-Notch3 NRR antibody binds to the LIN12/Notch Repeat A (LNR-A) and heterodimerization domain C (HD-C) domains of Notch3 NRR.
- **6**. The method of claim **4**, wherein the anti-Notch3 NRR antibody is a humanized form of antibody 256A-4 or 256A-8.
- 7. The method of claim **4**, wherein the anti-Notch3 NRR antibody comprises the heavy and light chain variable region CDRs of antibody 256A-4 or 256A-8.
- **8**. The method of claim **1**, wherein the anti-Notch3 antagonist antibody is an anti-Notch3 antibody that binds to one or more EGF-like repeats of Notch3.

9. The method of claim **8**, wherein the antibody reduces binding of a ligand to Notch3.

66

- 10. The method of claim 1, further comprising administering an effective amount of an anti-Notch1 antagonist anti-body.
- 11. The method of claim 10, wherein the anti-Notch1 antagonist antibody is an anti-Notch1 negative regulatory region (NRR) antibody.
- 12. The method of claim 11, wherein the anti-Notch1 NRR antibody binds to the LIN12/Notch Repeat A (LNR-A), LIN12/Notch Repeat B (LNR-B), and heterodimerization domain C (HD-C) domains of Notch1 NRR.
- 13. The method of claim 11, wherein the anti-Notch1NRR antibody is selected from Antibody A, A-1, A-2, and A-3.
- 14. The method of claim 11, wherein the anti-Notch1 NRR antibody comprises the heavy and light chain variable region CDRs of an antibody selected from Antibody A, A-1, A2, and A-3
- **15**. The method of claim **10**, wherein the anti-Notch1 antagonist antibody is an anti-Notch1 antibody that binds to one or more EGF-like repeats of Notch1.
- **16**. The method of claim **1**, wherein treating the patient reduces the number of proliferating cancerous cells in the patient, compared to pre-treatment levels.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE **CERTIFICATE OF CORRECTION**

PATENT NO. : 9,200,071 B2

APPLICATION NO. : 13/498560

DATED : December 1, 2015 INVENTOR(S) : Christian Siebel

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 103 days.

Signed and Sealed this Third Day of January, 2017

Michelle K. Lee

Michelle K. Lee

Director of the United States Patent and Trademark Office